
Proceedings of 95th ISERD International Conference, Yokohama, Japan, 9th -10th December 2017

13

PORTING OPEN SOURCE ETHERCAT MASTER SOFTWARE STACK
TO ZEDBOARD RUNNING FREERTOS

1CHUAN-CHING SUE, 2JHONG-WEI SYU

1,2Dept. of CSIE, National Cheng Kung University, Tainan, Taiwan.

E-mail: 1suecc@mail.ncku.edu.tw, 240043120@gm.nfu.edu.tw

Abstract - Real-Time Ethernet was developed to address the numerous shortcomings of conventional fieldbus standards.
EtherCAT is the most widely applied Real-Time Ethernet protocol, due to its real-time operability, synchronization
performance, and high bandwidth utilization. However, most existing open-source EtherCAT master software stacks are on the
Linux platform, and therefore require specific extensions to enable the precision scheduling of periodic real-time tasks.
Implementation of the EtherCAT embedded master in this paper is achieved by modifying interfaces between SOEM software
stack and FreeRTOS RTOS and between FreeRTOS RTOS and ZedBoard hardware. We also discuss various issues
encountered in the control and synchronization of multiple high-precision EtherCAT slave motors. The implemented
EtherCAT embedded master enables the scheduling of periodic real-time tasks during every 125µs and reduce maximum
scheduling jitter to just 1.622µs.

Keywords - Real-Time Ethernet, EtherCAT, Embedded, RTOS.

I. INTRODUCTION

Since 1980, the trend in industrial communication
protocols has been on the development of fieldbus
standards in accordance with the
applicationsdeveloped by various companies[1] (e.g.,
P-NET, PROFIBUS, WorldFIP, Foundation Fieldbus,
ControlNet, Interbus and CANOpen). Conventional
fieldbus standards have numerous shortcomings [2-3],
such as closed networks, a lack of interoperability
between devices in different companies, limitations on
the number of nodes in each network segment, and a
lack of precision control. Fieldbus standards are being
gradually replaced by Ethernet standards [4-5], which
enable open system connectivity (OSI), a high degree
of interoperability, high-speedtransmission, support
for TCP/UDP/IP applications, and resistance to
interference.
The fact that Ethernet systems based on CSMA/CD
mechanism cannot guarantee deterministic real-time
control led to the development of Real-Time Ethernet
in 2008 [6], under the IEC 61158 fieldbus standard
(e.g. PROFINET, Ethernet Powerlink (EPL), SERCOS
III, Modbus/TCP, Ethernet/IP and EtherCAT).
Among the Real-Time Ethernet (RTE) [7], EtherCAT
is the most widely applied because it provides the best
performance with regard to real-time operability and
bandwidth utilization [8-10]. EtherCAT networks
comprise multiple high-precision slave motors and an
EtherCAT master. The EtherCAT master requires
thescheduling of periodic real-time tasks [11-12] to
enable the synchronization of multiple high-precision
slave motorsin order to achieve real-time control.
Periodic real-time tasks deal with two main issues: (1)
Management of control signals based on state
information of EtherCAT slaves and (2)
Communications processes including the transmission
of EtherCAT frames via Network Interface Card
(NIC). Real-Time Operating Systems (RTOSs) make it

possible to schedule the execution of periodic real-time
tasks and estimate the worst-case execution time,
which makes them suitable for EtherCAT master.
Nevertheless, most open-source EtherCAT master
software stack (e.g. IgH [13] and SOME [14]) was
developed on the Linux platform, which requires
specific extensions to enable the precision scheduling
of periodic real-time tasks. Our proposed development
of the EtherCAT embedded master was based on the
modification of interfaces between SOEM Software
Stack and FreeRTOS RTOS [15]as well as between
FreeRTOS RTOS and ZedBoard hardware [16] in
accordance with the EtherCAT Master
Architecture.This scheme achieves maximum
scheduling jitter of only 1.622µs (only 6.4% of a 250µs
scheduling period).
In this paper,we designed a novel EtherCAT embedded
master aimed at synchronizing multiple high-precision
EtherCAT slave motors to enable multi-axis motion
control using a 125µs scheduling period and discussed
issues encountered in the control and synchronization
of multiple high-precision EtherCAT slave motors.
The remainder of this paper is outlined in the
following. Section 2 discusses our motivation behind
this research. Section 3 introduces the proposed
EtherCAT embedded master based on the EtherCAT
Master Architecture, integrating SOEM Software
Stack, FreeRTOS RTOS, and ZedBoard hardware.
Section 4 presents the tests used to verify the efficiency
of the EtherCAT embedded master. Finally, Section 5
concludes the paper and discusses future work.

II. MOTIVATION

Cereia, Cibrario, and Scanzio [17-18]executed
periodic real-time tasks on the open-source IgH
EtherLab EtherCAT master component under Linux.
Periodic real-time tasksareresponsible for sending the
EtherCAT frame to digital I/O terminal slaves. A

Porting Open Source EtherCAT Master Software Stack to ZedBoard Running FreeRTOS

Proceedings of 95th ISERD International Conference, Yokohama, Japan, 9th -10th December 2017

14

1000µs scheduling period results in maximum
scheduling jitter of 1434µs without interference from
other best-effort applications. They also set a 1000µs
scheduling period and use real-time extensions (e.g.
RT Patch and RTAI) to reduce maximum scheduling
jitter to just 2.489µs without interference from other
best-effort applications. They also set a 250µs
scheduling period with maximum scheduling jitter of
5.549µs. Nonetheless, IgH contains a great deal of
code running on the kernel space, which makes it hard
to understand, modify, and maintain.
Andreas [19] surveyed all existing EtherCAT master
software stacks in an attempt to implement an
EtherCAT master; however, the resulting solution
lacks many of the functionalities of previous schemes.
The difficulties encountered in the development of
EtherCAT masters can be divided as follows: (1) The
time-consuming task of studying many specifications
and datasheets; (2) Tracing an open-source EtherCAT
master software stack to elucidate implementation in
accordance with the specifications; and (3) Defining

the interfaces between the open-source EtherCAT
master software stack and operating system as well as
between the operating system and hardware platform.
To the best of our knowledge, no existing EtherCAT
master is able to schedule periodic real-time tasks
every 125µsto enable high-precision control over
EtherCAT slave motors. We also developed rapidly an
EtherCAT embedded master based on an EtherCAT
Master Architecture, without the need for additional
real-time extensions to minimize scheduling jitter.

III. EtherCAT MASTER ARCHITECTURE

EtherCAT Master Architectures come as a general
architecture (4 layers including PC, Linux Operating
System, EtherCAT Master Software Stack and
Application) or embedded system architecture (5
layers including Embedded Platform, Ethernet NIC
Driver, Real-Time Operating System, EtherCAT
Master Software Stack and Application), as shown in
Fig. 1.

Fig. 1: EtherCAT Master Architecture from PC to Embedded Platform

In the general architecture, the Linux Operating
System provides a Timer, System Time, usleep,
Mutex, Thread create and Nicdrv. The embedded
system architecture provides the functions of an
Embedded Platform, Ethernet NIC Driver, and
Real-Time Operating System, as shown in Fig. 1.

A. Embedded Platform
Layer 1, the ZedBoard hardware [16],is used to replace
the PC because it is more easily combined with
FreeRTOS to enable the scheduling of periodic
real-time tasks. The ZedBoard hardware is also better
suitedto special applications, such as motor control and
software acceleration.
The ZedBoard hardware includes a Dual-core ARM
Cortex A9 and board support package (BSP). The
ARM Cortex A9 uses a decreasing counter as a 3ns
resolution hardware timer (hTimer) to provide a
reference to System Time. The BSP provides an
Ethernet NIC Driver, and real-time operating
system.This makes it possible to modify the interfaces
among the Ethernet NIC Driver, real-time operating
system (RTOS), and EtherCAT master software stack
quickly and easily.

B. Ethernet NIC Driver
BSP is in Layer 2, providing Ethernet NIC driver
(Nicdrv) to replace the Ethernet NIC driver within the
Linux kernel. We modified LWIP ICMP example code
to make it possible to send a 64~1518-byte EtherCAT
frame and receive EtherCAT response frames from the
slave.
In the LWIP ICMP example code, the DMA receiving
handler inserts ping request packets into the packet
queue of the main memory, when a ping request packet
is received by the NIC RX Ring Buffer. Mailbox task
delivers the ping request packet to ICMP task to be
copied to the RX Buffer in main memory using
memcpy, whereupon the buffer in the packet queue is
de-allocated.
LWIP ICMP example code is used to ensure the
availability of the TX Ring Buffer in NIC to send the
ping response packet in the TX Buffer (i.e. main
memory) via NIC. As long as the buffer is available,
the DMA sending handler transmits the ping response
packet to the TX Ring in the NIC, and request the NIC
to send a ping response packet, as indicated by the blue
block in Fig. 2.

Embedded Platform

Ethernet NIC Driver

Real-Time Operating System

EtherCAT Master Software Stack

Application

PC

Linux Operating System

EtherCAT Master Software Stack

Application

Nicdrv, Timer, System Time,
usleep, Mutex, Thread create Nicdrv

Timer, System Time,
usleep, Mutex, Task create

System Time

Porting Open Source EtherCAT Master Software Stack to ZedBoard Running FreeRTOS

Proceedings of 95th ISERD International Conference, Yokohama, Japan, 9th -10th December 2017

15

Fig. 2: Procedure used in sending and receiving EtherCAT Frame

We refer to a process flow of the ping response packet
to send an EtherCAT frame in the TX Buffer. The
TCP/IP header is removed to produce a Raw Socket to
send a 64~1518-bytes EtherCAT frame, as shown
inFig. 2(a).
We refer a process flow of the ping request packet to
receive the EtherCAT response frame in RX Buffer.
We must continue monitoring the packet queue in the
main memory for the exchange of process data. In the
event of an incoming packet, it is copied (in packet
queue) to a Temp Buffer (in main memory) using
memcpy, and the buffer in packet queue is
de-allocated. The packet is then copied to the RX
Buffer in main memory using memcpy if the packet in
Temp Buffer is an EtherCAT Frame, as shown inFig.
2(b).

C. Real-time Operating System
Layer 3, FreeRTOS RTOS [15] v8.2.3 replaces the
Linux Operating System to provide Timer, System
Time, usleep, Mutex and Task create.
The Timer provides a software tick count (sTick) as a
timeout reference. Until the timeout is exceeded, the
master continues sending the frame until it is received.
In tick ISR, sTick increases by 1 if a timeout occurs. In
cases where the timeout threshold is low, the tick ISR
is triggered more frequently, which generally gives
FreeRTOS RTOS high overhead. To prevent excessive
overhead, we set the timeout to 2ms. The resolution of
the hardware timer is 3ns; therefore, the hardware
initial counter value (hIcnt) is set at 666666, i.e.,
2ms (≅ 3ns × hIcnt).

The EtherCAT Master must synchronize the system
time of all slaves; therefore, we obtain system time
using sTcik and hTimer.

System Time is calculated as follows:

System Time = [sTick × hIcnt + (hIcnt
− hTimer)] × 3ns

In the configuration of a slave, the usleep function
provides a time interval between frames complied in
accordance with EtherCAT specifications.
Mutex is used for the allocation of frame buffer
resources (i.e. TX Buffer and RX Buffer), where TX
Buffer and RX Buffer are pre-allocated in main
memory (i.e. static memory space). In seeking
EtherCAT frame transmission, the EtherCAT master
must obtain two buffers from TX Buffer and RX
Buffer. EtherCAT master must ensure that two buffers
are not allocated repeatedly.
The Task create function is used for the creation of
periodic real-time tasks. The software tick handler (i.e.
the tick ISR) increases sTick and is responsible for the
scheduling of periodic real-time tasks. If all tasks have
the same priority, then time-sharing is used for
scheduling; otherwise, higher priority tasks are
executed first.

D. EtherCAT Master Software Stack
Layer 4is theSimple Open EtherCAT Master (SOEM)
v1.3.1. Developing the EtherCAT embedded master
requires a comprehensive understanding of the
interfaces between "SOEM and FreeRTOS" and

The EtherCAT frame had been
transmitted to TEMP buffer in

main memory.

The EtherCAT Frame had
been transmitted to packet

queue in main memory.

DMA sending handler

EtherCAT frame is held in TX
buffer in main memory

The EtherCAT frame had been
transmitted to TX ring in NIC.

Require NIC to transmit the
frame

DMA receiving handler

the interrupt is asserted for isr
if transmit done

The EtherCAT frame had been
received to RX Ring in NIC.

the interrupt is asserted for isr
if reception doneemacps_sgsend()

low_level_input()

memcpy()

called by user application

emacps_send_handler() emacps_recv_handler()

(a) (b)

Porting Open Source EtherCAT Master Software Stack to ZedBoard Running FreeRTOS

Proceedings of 95th ISERD International Conference, Yokohama, Japan, 9th -10th December 2017

16

"FreeRTOS and ZedBoard".
SOEMrequires Nicdrv, Timer, System Time, usleep,
Mutex, and Thread create, provided by the System call
of Linux (general architecture); however,it would be
preferable to implement these functions by modifying
the FreeRTOS application interface (API), as shown in
Table 1.

Table 1:System call of Linux map to the FreeRTOS API

E. Application
The Layer 5, application deals with CoE access to the
PDO to control the slave.
For example, the 2nd RxPDO includes Controlword
and Target position. Controlword refers to the control
signal and Target position refers to the rotation of the
slave motor into a specific position, as shown in Table
2.

Index Sub Name
Default value
(IndexData

Length)

1601h 0 Number of
mapped objects 3

 1 Controlword 60400010h
 2 Target position 607A0020h

Table 2:2nd Receive PDO for Motion Control

In another example, the 2nd TxPDO includes
Statusword and the Actual position. Statusword refers
to the current status signal of the slave, whereas Actual
position refers to the(required) current position of the
slave motor, as shown in Table 3Error! Reference
source not found..

Index Sub Name
Default value
(IndexData

Length)

1A01h 0 Number of
mapped objects 3

 1 Statusword 60410010h

 2 Actual position 60640020h
Table 3: 2nd Transmit PDO for Motion Control

IV. RESULTS

In order to confirm the correctness of the system
behavior and to determine whether the system meets he
specifications, we will test and verify the system in the
following subsections.

A. Testing and Verification
Testing is to ensure that the correctness of the
EtherCAT protocol related application. We adopted
two-axis motion control to demonstrate the efficiency
of the EtherCAT embedded master based on an
embedded system architecture. Our aim was to check
the main functionalities, including Network
configuration, Mailbox protocol CoE, Distributed
Clocks with master synchronization, and Cyclic PDO.
Verification is to ensure that the system meets the
expected specification. The verification in the paper is
a measure of the scheduling jitter for the embedded
master. We measured the maximum scheduling jitter
with real-time task period of 1000µs, 500µs, 250µs,
125µs and 60µs. The maximum scheduling jitter was
less than the real-time period, which means that our
system conforms to the specification and it can control
the slaves properly.
In these experiments, we used two Yaskawa
SGDV-2R8AE1A SERVOPACK[20]respectively
connected to a SGMAV-04ADA61 motor as two
EtherCAT Slaves. Fig. 3 presents a flowchart showing
the EtherCAT embedded master used for the
configuration and control of each EtherCAT slave.
Each slave provides four sets of PDO mappings. We
employed multi-axis motor synchronous control;
therefore, all of the slaves use 2nd PDO mapping, as
previously shown in Tables 2 and 3.
The minimum SYNO0 Cycle Time of the slaves is
125µs; therefore, the EtherCAT embedded master
must collaborate with the slaves for real-time control
using a 125µs real-time period. As shown in Fig. 4, the
real-time periodic tasks involve sending a 100-byte
EtherCAT frame for the exchange of PDO data. The
time remaining in the real-time period is calculated as
follows: 125µs real-time period minus the time used
for the management of control signals and
communication processes. For the sake of simplicity,
the remaining available period is used to execute
usleep() to replace the transmission of aperiodic data.

Scheduling jitter is measured as follows:
currentsystemtime – the lastsystemtime - real-time
period. We used 106 samples to measure scheduling
jitter associated with periodic real-time tasks.When
using a real-time period of 125µs, the maximum
scheduling jitter was 1.885µs. This should be
acceptable for most real-time control applications, as
shown in Table 4.

Porting Open Source EtherCAT Master Software Stack to ZedBoard Running FreeRTOS

Proceedings of 95th ISERD International Conference, Yokohama, Japan, 9th -10th December 2017

17

Fig. 3: Flowchart illustrating servo synchronization for each EtherCAT slave

Fig. 4: Cyclic process data communication between master and two slaves

 1000µs 500µs 250µs 125µs 60µs

µ -0.516 -0.056 0.174 0.301 0.360
σ 0.234 0.238 0.233 0.230 0.228

Min -1.156 -0.659 -0.421 -0.281 -0.219
Max 0.968 1.432 1.733 1.885 1.929

Table 4: Statistics of scheduling jitter under real-time periods

The frequency distribution of scheduling jitter with a 125µs real-time period is shown in Fig. 5.

To verify the time synchronization between the EtherCAT master and the EtherCAT slave, the EtherCAT
embedded master continuously sends the EtherCAT frame using varying periods to correct the system time
difference value between the slave and the Reference Clock to less than 100ns. The experimental results show that
the slave converges to 100ns in a 110ms period, as shown in Fig. 6.

For comparison, we installed Ubuntu 16.04 on a PC with an Intel Core2Duo E6500 dual-core CPU running at 2.93
GHz with 1964 MB of dual-channel DDR2 RAM and ranSOEM v1.3.1 on a standard Linux PC, finding that
scheduling jitter appeared to be too high.

As shown in Table 5, when the real-timeperiod was1000µs, the maximum scheduling jitter was 1732.0µs (far

Start

changeState(Init)

getState() == Init
No

Yes

setAddress (address)

configDC (FreeRun, null)

changeState(Pre-Op)

getState() == Pre-Op
No

configComponent (SyncM,
128)

changeState(Safe-Op)

getState() == Safe-Op

No

YesconfigComponent (FMMU, 6)

changeState(Op)

getState() == Op
No

Yes

accessData (read, TxPDO, 0x1601, TxBuf)
accessData (write, RxPDO, 0x1A01, RxBuf)

End

The master already finished
EtherCAT communication cycle.

Yes

No
readEEPROM (SyncM, mBuf)

readEEPROM (FMMU, mBuf)

configDC (DC, 125µs)

Network configuration
Mailbox protocol CoE
Distributed Clocks with master synchronization
Cyclic PDO

accessData (write, SDO, 0x6060 TxBuf)

Ethernet headerEtherCAT headerDatagram 3Ethernet

Two RxPDOsTwo TxPDOs
The FPRD for
Monitoring the

difference

6 bytes
TxPDO

6 bytes
RxPDO

6 bytes
TxPDO

6 bytes
RxPDO

Master Slave 1 Slave 2

The FRMW for
Master-Slave

Synchronization

Datagram 4

Pad.FCS

(4) (0...32)

DASATypeFrame HDR
(6)(6)(2)

0x88A4
(2)

EtherCAT frame's travel path

Ethernet Cable

(12+8)
System
Time

(12+4)
Difference

Value

(12+6+6)
RxPDOs

(12+6+6)
TxPDOs

tMaster Time tSystem Time tSystem Time

Datagram 2 Datagram 1

Porting Open Source EtherCAT Master Software Stack to ZedBoard Running FreeRTOS

Proceedings of 95th ISERD International Conference, Yokohama, Japan, 9th -10th December 2017

18

exceeding 1000µs). Such high scheduling jitter would cause the slaves to generate an error signal if the SYNC0
Cycle Time were set to 1000µs.

Fig. 5: Frequency distribution of real-time period of ퟏퟐퟓ 훍퐬

Fig. 6:System Time Difference Value of EtherCAT Slave 2

 µ σ Min Max

1000µs 5.944µs 18.696µs 3.0µs 1732µs

Table 5: Statistics of scheduling jitter J under real-time period of 1000µs

CONCLUSIONS

The EtherCAT protocol provides highly satisfactory
real-time operations, excellent synchronization, and
maximum bandwidth utilization. We developed a
novel EtherCAT Master Architecture to overcome
restrictions involved in using real-time extensions,
using an EtherCAT master embedded through the
modification of interfaces between SOEM Software
Stack and FreeRTOS RTOS and between FreeRTOS
RTOS and ZedBoard hardware. The maximum
scheduling jitter of the proposed scheme is 1.929µs,
which should be acceptable for any real-time control
applications.

This paper makes contributions inthree areas. We
developed an EtherCAT embedded master that enables
the scheduling of periodic real-time tasks using a
125µs real-time period. We were able to integrate the
three fundamental layers: SOEM software stack,
FreeRTOS RTOS and ZedBoard hardware. We also
reduced scheduling jitter.
Our future work will focus on two areas of research:
(1) Implementing the other functionalities that are not
supported by SOEM(EoE and SoE); also include the
redundancy functionality because the redundancy
functionality provided by SOEM was removed during
the development of the EtherCAT embedded master.
In the future, the ZedBoard hardware will be used to
extend multi-port Ethernet to recover the redundancy
functionality and (2) we will also seek to accelerate
communication processing through the manipulation
of EtherCAT frames and cyclic executions in FPGA.
The FPGA provided by the ZedBoard hardware can be
used to accelerate frame generation and frame
disassembly.

ACKNOWLEGEMENT

This work was supported in part by the Ministry of
Science and Technology, Taiwan, R.O.C., under Grant
MOST106-2221-E-006-008

REFERENCES

[1] M. Felser, T. Sauter, "The fieldbus war: history or short break

between battles?," in Proceedings, IEEE International
Workshop Factory Communication Systems, pp. 73-80, 2002.

[2] J. Kay, R. Entzminger, and D. Mazur, "Industrial ethernet-
overview and best practices," in Pulp and Paper Industry
Technical Conference, pp. 18-27, Jun. 2014.

[3] J. Kay, R. Entzminger, D. Mazur, "Industrial ethernet:
Overview and application in the forest products industry,"
IEEE Industry Application Magazine, pp. 54-63, 2015..

[4] B. Galloway, G. Hancke, "Introduction to industrial control
networks," IEEE Communications Surveys and Tutorials, vol.
15, no. 2, pp. 860-880, 2013.

[5] M. Felser, T. Sauter, "Standardization of industrial
Ethernet—The next battlefield?," in Proceedings, IEEE
International Workshop Factory Communication Systems, pp.
413-421, Sep. 2004.

[6] M. Rostan, "Industrial Ethernet Technologies: Overview and
Comparison," ETG Industrial Ethernet Seminar Series,
Nuremberg, Nov. 2008.

[7] J.-D. Decotignie, "Ethernet-based real-time and industrial
communications," in Proceedings, IEEE International, vol. 93,
no. 6, pp. 1102-1118, Jun. 2005.

[8] M.Felser, "Real-time Ethernet – Industry prospective," in
Proceedings, IEEE International, vol. 93, no. 6, pp. 1118-1129,
Jun. 2005.

[9] H. Büttner, D. Janssen and M. Rostan, "EtherCAT - the
Ethernet fieldbus," PC Control Magazine, pp.14-19, March
2003.

[10] D. Jansen, H. Buttner, "Real-time ethernet the EtherCAT
solution," Computing and Control Engineering, vol. 15, pp.
16-21, Feb. 2004.

[11] S. Potra and G. Sebestyen, "EtherCAT protocol
implementation issues on an embedded linux platform," in
Proceedings,IEEE International Conference, vol. 1. pp.
420-425, 2006.

Porting Open Source EtherCAT Master Software Stack to ZedBoard Running FreeRTOS

Proceedings of 95th ISERD International Conference, Yokohama, Japan, 9th -10th December 2017

19

[12] M. Felser, "Real time Ethernet: Standardization and
implementations,"in Proc. IEEE Int. Symp. Ind. Electron., pp.
3766–3771, 2010.

[13] IgH EtherCAT master Reference Manual [Online]. Available:
http://www.etherlab.org/en/ethercat/

[14] Open EtherCAT Society [Online]. Available:
http://openethercatsociety.github.io/

[15] FreeRTOS [Online]. Available: http://www.freertos.org/
[16] Zynq-7000 All Programmable SoC Technical Reference

Manual [Online]. Available:
https://www.xilinx.com/support/documentation/user_guides/u
g585-Zynq-7000-TRM.pdf

[17] M. Cereia, I. Cibrario Bertolotti, and S. Scanzio, "Performance
evaluationof an EtherCAT master using Linux and the RT

Patch," in Proc.IEEE Int. Symp. Ind. Electron., pp. 1748–1753,
Jul. 2010.

[18] M. Cereia, I. Cibrario-Bertolotti, and S. Scanzio, "Performance
of a real-time EtherCAT master under Linux," IEEE
Transactions on Industrial Informatics, vol. 7, no. 4, pp.
679-687, Nov. 2011.

[19] Andreas Tågerud, "Implementation of an EtherCAT Master,"
Master Thesis, pp. 1-76, Sep. 2011.

[20] AC Servo Drives Σ-V Series USER'S MANUAL EtherCAT
(CoE) Network Module Model: SGDV-OCA01A [Online].
Available:http://www.innovativeidm.com/ResourceManager.a
spx?FileName=TM.YMOT.SIEPC72082904.pdf&FileType=7

