IMPACT OF PLANT HEIGHT AND IRRIGATION ON THERMAL PERFORMANCE OF EXTENSIVE GREEN ROOFS IN RIYADH CITY

1ASHRAF MUHARAM, 2ELSAVED AMER, 3NASSER AL-HEMIDDI

1,2,3King Saud university,King Saud university,King Saud university
E-mail: 1ashraf.muharam@yahoo.com, 2s_amere@yahoo.com, 3dr_n_hemidd@yahoo.ca

Abstract- Increasing worldwide environmental concerns (Global warming, depletion of natural resources, acidrains, air and water pollutions, and ozone depletions) have led to the development of environmentally friendly construction practices. Green roof is one of the sustainable practices for reducing the environmental impact of a building. The study aim was identifying the impact of plant height and irrigation on thermal performance of an extensive green roof system in Riyadh city influenced by tropical and harsh climate. The experimental validations were applied on residential building in Riyadh city during the summer season in 2014. The experimental validations results indicated that the tall grass with average height from 6 to 15 cm can reduce the temperature of internal air from 0.5 to 1°C in comparison to the short grass with average height from 3 to 6 cm in similar conditions. While, the temperature of internal air differences were of 0.0±0.5°C with regular irrigation or irregular irrigation. However, when irrigation stopped more than two days, the grass would wither. Finally, this study has demonstrated that the grass height was more effective for its impact on the thermal performance than regular or irregular irrigation.

Keywords- Internal Temperatures, Irrigation, Short Grass, Tall Grass, Thermal Performance.

I. INTRODUCTION

Green canopy have an important role for roof cooling, which is depending on plant species in terms of shading, evapotranspiration, and irrigation which acts as an insulator. The experimental results of [3] confirm that the plant canopy reflects 13% of incident global solar radiation and absorbs 56%, so that the solar radiation entering the system can be then estimated as 31% of the incident global solar radiation. The thermal behavior of a green roof is a complex phenomenon (such as shading, evapotranspiration, conductivity and absorption) and involves combined heat and mass transfer exchanges. Various studies have analyzed the thermal performance of green roofs in different plant varieties. According to [5]–[2], different plants have different results at the levels of effectiveness. As the amount of the coverage increased, the magnitude of the temperature changed (decreased). Because of this, the parametric variations in leaf area index (LAI) and foliage height thickness are carried out to determine the modulation of canopy air temperature, the reduction in the temperature width, and to estimate the penetrating heat flux. Also, foliage acts as a shading device under which convection provokes heat thermal exchange, but foliage absorbs part of the thermal energy because of its vital process of photosynthesis. Furthermore, the results being drawn from the study of [8] showed that the effects of temperature reduction decrease with plant height. The best reductions in temperature occurred in 35 cm plants, followed by 15 cm and then 10 cm plants. The results also indicate that plants with green colored leaves are more effective than purple/red leafed plants in rooftop heat insulation. The leaf surface temperatures in this study were measured with infrared thermal imagers. However, the study of [15] found out that the most important parameter, when considering vegetation, is the foliage density. The foliage height alone is not one of the crucial factors affecting the performance of this cooling technique, but only in combination with the density of the vegetation layer. Moreover, the study of [1] found out that a larger leaf area index (LAI) reduces the solar flux penetration, stabilizes the fluctuating values, and reduces the indoor air temperature. Also, the study showed notably that in terms of evapotranspiration (ET) and solar heat gains factor (SHF), the foliage density and hence the vegetable canopy type selection influence the thermal efficiency of the climatic insulation greatly. In addition, the study of [10] compared the thermal effectiveness among three kinds of plant (Sedum, Plectranthus, and Kalanche) on an extensive green roof in an Indian Ocean area under a tropical humid climate. The results showed that Sedum green roof led to a higher heat restitution rate with 63%, than for Plectranthus (54%), and Kalanche (51%). In general, the results drawn from the study of [11] showed that a green roof which has high vegetation density acts as a passive cooling system. The incoming thermal gain is about 60% lower than when the roof has no vegetation. Irrigation is required to sustain vegetation throughout the extended dry periods. The water requirements of the plant species is from 2.6 to 9.0 L/m2per day, depending on the plant kind and the surrounding conditions [14]. Moreover, the study of [7] compared the irrigation among four plant types (C. chinense, C. variegatum, S. trifasciata, and cv. Laurentii). The study indicated that if plant leaves have greater evapotranspiration rates, they would not adapt to arid and severe environments for longer periods, thereby increasing water consumption. In contrary, plants with low evapotranspiration rates are suitable for arid and severe environments, thereby saving water resources. In addition, the study of [13] provided experimental evidence for a positive effect of the water retention...
layer on water status and drought survival of plants growing over green roofs. The water retention layer is better than the natural sand and soil for increasing the amount of water available in green roof systems. Therefore, some studies investigated the irrigation impact on the thermal performance of the extensive green roofs. According to [12]–[2] the presence and the quantity of water largely influence the thermal properties of green roofs. In fact, a wet roof provides additional evapotranspiration, which prevents the heat flux in buildings and acts as a passive cooler by removing heat from buildings. Also, the study of [4] found out that the difference between the soil surface temperature of a dry substrate and a saturated substrate is about 25 °C. In conclusion, the study of [9] found out that supplemental irrigation is required for maintaining plant diversity on an extensive green roof, but not necessarily plant cover or biomass which depends on the growing media type being used. Also, the results showed that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought.

II. METHODOLOGY

The method being adopted in this research depends on the mixed scanning approach which involves reviewing the research problem in the literature and compare the theoretical findings with the experimental validations in order to identify the impact of plant height and irrigation on the thermal performance of the extensive green roof in Riyadh city.

2.1 Application study

In order to obtain an experimental data regarding the thermal behavior of extensive green roofs and their interactions with the energy performance of buildings, an experimental platform with green roofs system was constructed in the Deraib region which is located in the north of Riyadh city. The experimental platform is a simple repetition of residential rooms being built by similar materials. The platform consists of two rooms which are used for the study of treatment of the energy efficiency of buildings by using a selective standard for extensive green roof properties, and conventional roofs (concrete roof with depth of 15cm), see Figure (1). Also, the facades of these rooms will be painted with the Paige color, see Figure (2). To reflect a real urban setting, the experiment was conducted on the residential building that could simulate both physical and geometrical similarities in reality. The application study consists of three stages: the stage of experiment preparation, the stage of data collection, and the stage of data analysis and discussion.

2.2 Heat measurement equipment

The normality of temperature and the relative humidity data was checked by using (The EL-USB-2-LCD+) which measured the air temperature and the relative humidity inside the rooms and outside the rooms every five minutes. Thermocouples sensors (ANRITSU Digital handheld thermometer - ANRITSU METER CO., LTD) were arranged in different levels within the model to include the components of the empirical model so as to measure the covariance of temperature. Heat flux sensors were placed on the surface of the plants, walls, and at the ceiling layer in order to assess the amount of the heat conduction of those components. The results of the experiment were analyzed by using the statistical analysis program of Microsoft Excel.
reaching the roof decking in an actual field installation).
- A 0.1 mm thick polyethylene slip sheet allowed any moisture in the waterproofing membrane to exit the system and saving water for irrigation.
- A 3 cm thick gravel which is as drainage layer and saving soil from erosion.
- A 2 cm thick sand that acts as a filter layer for drainage.
- A 4 cm thick soil which consists of mixed ratio (1:1:3) – (batamos: clay soil: soft sand) with organic materials.
- A 3 cm thick vegetative roll layer with Cynodon dactylon (Bermuda- Tifway - 419) grass.

Drainage pipes of excess water from the growing medium were channeled and installed in the corners of the green roof substrate to allow water to drain freely from the system.

2.3 Installation of Measuring devices
There are 24 sensors that are used in this test. Eight sensors are in the green roof system, see Figure (5), two sensors are in the concrete roof system, six sensors are in the treatment room walls, six sensors control room and two sensor out test rooms.

III. DATA COLLECTION AND ANALYSIS

Thermal performance of extensive green roofs was during the warm period. The warm period chosen for the analysis was in June 2014 from (06-June to 23-June), which is a representative of a typical summer season in Riyadh city. The daytime is characterized by high loads of solar radiation with an average air temperature of 42°C and an average relative humidity of 15.1%. Days presented winds with daily average and max value from 4.0 km/h to 17.0 km/h.

3.1 Grass Height
A Tall Grass

Figure (6) shows the high of grass during the time period test. The height was from 8cm to 15cm. Figure (7) shows that the average values of the internal air temperature differences were of 5.5±2°C among the treatment and control rooms with tall grass, when the external air temperature reached to 44°C.

Figure (8) shows the temperature of thermocouples in substrate layer of extensive green roof system. The average values of substrate layers temperature differences were of 1±.01°C during the testing time period. The maximum temperature of substrate layers reached to 50°C when the external air temperature was 43°C and the minimum temperature of substrate layers reached to 34°C when the external air temperature was 28°C. However, the internal ceiling temperature was lower than the top layer of substrate (grass layer) up from 4°C to 14°C. While the air temperature at 4cm in
the grass layer reached 58°C because of the evapotranspiration phenomenon. Also, Figure (8) shows that the performance of substrate layers were different during the time period of day. During the night period, the lower layers of temperature were lower than the uppers layers of temperature. While during daylight period, the lower layers of temperature were higher than the uppers layers of temperature.

B Short Grass

Figures (9 and 10) show the method of cutting grass to test the impact of grass height on the thermal performance of the extensive green roof system. The grass height after cutting was from 3cm to 5cm.

Figure (11) shows that the average values of the internal air temperature differences were of 5.5±2.5°C for the extensive green roof system (with short grass) being compared to the concrete roof system, when the maximum external air temperature reached 42°C and the minimum external air temperature reached 29°C. Also, Figure (12) shows the temperature of thermocouples in the substrate layer of the extensive green roof system after cutting grass with 5cm height. The average values layers temperature differences were of 2.5±0.1°C during the daylight. The maximum temperature of substrate layers reached to 51°C when the temperature of external air was 41°C. However, the temperature of internal ceiling was lower than the top layer of the substrate (grass layer) from 7°C to 13°C during the daylight.

A The impact of irrigation on the temperature of internal air As shown in Figure (14), the temperature of internal air in the treatment room (with regular irrigation) was lower than the temperature of internal air in the same room (without irrigation for one day to two days). The differences were of 0.5°C during the

3.2 Irrigation

Irrigation was required to sustain vegetation throughout the extended dry periods. The water requirements of the plant species in this experiment were 6.0 L/m2 per day. The manual irrigation method was used at 6:30 pm every day for five to six minutes, see Figure (13).

Figure (13) The method of manual irrigation during the testing period.

testing period. This means that the higher the water volumetric content, the lower the minimum of the daily temperature.

![Figure: (14) Temperature variation of the internal air temperature in treatment room and control room with tall grass (first day irrigation, next day off and third day off too) during the time period from 16-6-2014 at 7:00 PM to 19-6-2014 at 5:00 PM.](image)

B The impact of irrigation on the performance of substrate layers

Figure (15) shows the impact of regular and irregular irrigation on the temperature of substrate layers in the extensive green roof system with tall grass through the thermocouples sensors. When the temperature of external air was 40°C, the average values layers of the temperature differences were of 2.5±.5°C during the daytime. When regular irrigation, the maximum temperature of substrate layers reached 49°C, while with irregular irrigation (day off) the maximum temperature of substrate layers reached 51.4°C.

In addition, While the air temperature at 4 cm in the grass layer reached 57.8°C on the day of regular irrigation. It reached 49.5°C on the day with irregular irrigation (day off) because of the evapotranspiration phenomenon. Before the irrigation, the soil temperature of the layer surface reached 49°C, while the water was cold. So, the water evaporated and the air temperature increased.

![Figure: (15) Temperature variation of substrate layers temperature in extensive green roof system with tall grass (first day irrigation and the second day off) during the time period from 12-6-2014 at 6:00 PM to 14-6-2014 at 6:00 PM.](image)

4.1 Grass Height

The tall grass with average height from 6 to 15 cm can reduce the temperature of internal air from 0.5 to 1°C, in comparison to the short grass with average height from 3 to 6 cm in similar conditions, as it is shown in Table (1). In the treatment room with tall grass, the temperature of internal air varied from 35.5 to 33°C. But in the treatment room with shortgrass, the temperature of internal air varied from 36.5 to 33.5°C. This means that the leaf area and the foliage height thickness could reduce penetrating heat flux by shading and evapotranspiration phenomenon.

Moreover, the grass height has a significant impact on the temperature of the substrate layer. As shown in Table (2), the temperature of substrate layers varied from 50 to 32°C with tall grass, while the temperature of substrate layers varied from 51 to 33°C the maximum temperature of the external air were 43°C and 41°C respectively during the daylight. So, the tall grass temperature of substrate layers was lower than that of the short grass during similar conditions. However, the temperature of beneath layer in the substrate (Gravels layer) was lower than the top layer in the substrate (soil layer) during the first morning hours. But at noon, the gravel layer temperature was higher than the soil layer, due to the increasing of the thermal storage.

![Table: (1) Temperature variation of the internal air temperature in treatment room with tall grass and with short grass.](image)

![Table: (2) Temperature variation of substrate layers temperature with tall grass and with short grass.](image)
4.2 Irrigation
As shown in Table (3), the regular irrigation or irregular irrigation in the extensive green roof system did not have a significant impact on the thermal behavior of the extensive green roof system. The temperature of internal air in the treatment room with regular irrigation varied from 36.5 to 33.5°C during the daylight, while it varied from 37 to 33.5°C in the treatment room with irregular irrigation when the external air temperature varied from 40 to 31°C and from 40 to 30°C, respectively. The temperature of internal air with regular irrigation was lower than that with irregular irrigation. The temperature differences were of 0.0±0.5°C. However, when irrigation stopped for more than two days, the grass would wither. In addition, as shown in Table (4), the temperature of substrate layers varied from 49 to 33.6°C with regular irrigation, while the temperature of substrate layers with irregular irrigation varied from 51.4 to 33°C when the external air temperature varied from 40 to 30°C during the daylight. The substrate layers temperature differences were of 2.4±0.6°C with regular or irregular irrigation. From these results and through the comparison of the impact of grass height and irrigation on the thermal performance of extensive green roof, the grass height was more effective for its impact on the thermal performance than regular or irregular irrigation.

Table: (3) Temperature variation of substrate layers temperature with regular and irregular irrigation.

<table>
<thead>
<tr>
<th>External Air Temperature</th>
<th>Treatment Room (Green Roof)</th>
<th>Internal Air Temperature</th>
<th>Treatment Room (Green Roof)</th>
<th>Temperature Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular irrigation</td>
<td></td>
<td>Irregular irrigation</td>
<td></td>
</tr>
<tr>
<td>Time period</td>
<td>from 12-6-2014 at 5: Am</td>
<td></td>
<td>from 18-6-2014 at 5: Pm</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>40°C</td>
<td>36.5°C</td>
<td>40°C</td>
<td>37°C</td>
</tr>
<tr>
<td>Minimum</td>
<td>31°C</td>
<td>33.5°C</td>
<td>30°C</td>
<td>33.5°C</td>
</tr>
<tr>
<td>Difference</td>
<td>9°C</td>
<td>3°C</td>
<td>10°C</td>
<td>2.5°C</td>
</tr>
</tbody>
</table>

Table: (4) Temperature variation of the internal air temperature in treatment room with regular and irregular irrigation.

<table>
<thead>
<tr>
<th>External Air Temperature</th>
<th>Treatment Room (Green Roof)</th>
<th>Internal Air Temperature</th>
<th>Treatment Room (Green Roof)</th>
<th>Temperature Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular irrigation</td>
<td></td>
<td>Irregular irrigation</td>
<td></td>
</tr>
<tr>
<td>Time period</td>
<td>from 13-6-2014 at 5: Am</td>
<td></td>
<td>from 14-6-2014 at 7: Pm</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>40°C</td>
<td>49°C</td>
<td>40°C</td>
<td>51.4°C</td>
</tr>
<tr>
<td>Minimum</td>
<td>29°C</td>
<td>33.6°C</td>
<td>29°C</td>
<td>33°C</td>
</tr>
<tr>
<td>Difference</td>
<td>11°C</td>
<td>16°C</td>
<td>11°C</td>
<td>18°C</td>
</tr>
</tbody>
</table>

CONCLUSION
A number of conclusions can be drawn from the experimental study presented and discussed in this study. The conclusions are the main results of this study.

The results of this study indicate that:
- Tall grass (6 to 15) cm was better than short grass (3 to 5) cm for reducing the temperature of internal air from 0.5 to 1°C.
- Tall grass (6 to 15) cm has a significant impact on the temperature of the substrate layer during the daylight in comparison with short grass (3 to 5). The temperature variation reached 3.8°C.
- The regular irrigation or irregular irrigation in the extensive green roof system did not have a significant impact on the thermal behavior of the extensive green roof system, especially for internal air temperature. The maximum temperature variation was up to 0.5°C. However, when irrigation stopped more than two days, the grass would wither.
- Water content with regular irrigation could cool the temperature of substrate layers more than irregular irrigation. The substrate layers temperature differences were of 2.4±0.6°C with regular or irregular irrigation.
- The temperature of internal walls in the treatment room (Green Roof) was higher than that in the control room (Concrete Room). However, the temperature of internal air in the treatment room was lower than that in the control room due to the use of the extensive green roof system. The temperature differences of internal air were of 5.5±2°C.
- Due to the increase of the thermal storage, the temperature of the beneath layer in the substrate (Gravels layer) was lower than the top layer in the substrate (soil layer) during the first morning hours, while at noon the gravel layer temperature was higher than the soil layer.

ACKNOWLEDGMENTS
This project was supported by the Research Center of Architecture and Planning College, King Saud university, Kingdom of Saudi Arabia.

REFERENCES
[4] Djedjig, R., Ouldboishatine, S., Belarbi, R. and Bozonnet, E.”Development and validation of a coupled heat and mass...
