
Proceedings of ISERD International Conference, Bangkok, Thailand, 16th May 2015, ISBN: 978-93-85465-12-3

45

EARLY ESTIMATION OF CACHE PROPERTIES FOR MULTICORE
EMBEDDED PROCESSORS

1KISHORE K. CHIDELLA, 2MUHAMMAD F. MRIDHA, 3ABU ASADUZZAMAN

1,3Wichita State University, 2University of Asia Pacific,

E-mail: 1kkchidella@wichita.edu, 2firoz@uap-bd.edu, 3Abu.Asaduzzaman@wichita.edu,

Abstract—The state-of-the-art embedded systems are expected to have multicore processors as multicore architecture
provides high performance to power ratio. Although cache improves the overall performance, designing multicore embedded
processors with multilevel caches is a great challenge. Caches make thermal constraint crucial; parallel thread execution
difficult; and timing unpredictability even worse. An effective early estimation technique can be very valuable to design
complex systems like multicore embedded systems. In this paper, we propose a simulation methodology to determine the
impact of cache on performance, power consumption, and predictability to facilitate the design of future embedded multicore
systems. Effective cache parameters (such as cache size), organizations (such as shared CL2), and techniques (such as cache
locking) for target applications can be predetermined using this method. We model a quad-core embedded system with two
levels of caches (where CL2 is shared). By varying total CL2 cache size and locked CL2 cache size, we run the simulation
program using popular FFT, GIF, JPEG, MPEG-3, and MPEG-4 workloads. Simulation results indicate that the optimal value
of CL2 is 128 KB in this experiment for the selected applications when average memory access time (i.e., delay) per task and
total power consumption are concerned. Experimental results also indicate that up to 25% CL2 cache locking is helpful for the
simulated system. It is observed that both mean delay per task and total power consumption decrease when cache size is
increased and/or 25% cache locking is applied; however, the impact of shared CL2 cache on power consumption is more
significant than that on mean delay.

Index Terms—Average Memory Access Time (Delay), Cache Memory, Embedded Systems, Multicore Processors, Power
Consumption.

I. INTRODUCTION

To move from current state-of-the-art embedded
systems to the advanced level, embedded systems
design methodology must need supports from early
estimation techniques. Due to requirements for more
processing speed and advancement in semiconductor
technology, future embedded systems should have
multicore processor. Currently available single-core
based modeling and simulation techniques are not
adequate to design modern multicore embedded
systems [1-4]. According to multicore architecture
design techniques, four cores running at one fourth of
the frequency can approach the performance of a
single-core running at full frequency, while the
quad-core power consumption is less.
As the number of cores in the processors is increasing,
software applications are having more and more
threads to take advantage of the available cores [5-8].
Multicore architecture in embedded systems has
proven the potential of supporting multithreaded
parallel processing. Multicore processors are
frequently deployed with multilevel cache memories
[9]. Parallel thread execution to achieve the best
performance in such a multicore system is difficult as
it relates to cache sharing. Multilevel caches also make
the execution time unpredictability worse. Therefore,
supporting real-time and/or multithreaded applications
on multicore embedded systems with multilevel
caches becomes an enormous challenge. In a real-time
embedded system, hardware requests must be satisfied
in a timely manner regardless of the system load. In a
simultaneous multithreading system, multiple threads

should be executing (on multiple cores) at the same
processor cycle. Real-time and/or multithreaded
applications can be efficiently supported on multicore
systems by effectively using the cache memory
subsystem. Studies show that bigger cache size may
improve performance and predictability; however, it
needs more power and area, which is not desirable in
embedded system design. Recent studies also show
that smaller amount of cache locking may improve
performance/power ratio and predictability [10].
Cache locking allows preloading memory blocks into
the cache and subsequently prevents these blocks from
being replaced during runtime. Cache locking at CL1
has some limitations. For example, some processors
(like PowerPC 750GX) do not permit entire cache
locking at CL1 [11]. Cache locking at shared level
(like CL2 or CL3), specifically for multicore
architecture, may be a promising alternative. This
cache locking strategy is scalable as no additional
logic is needed (to the cache locking mechanism) if
more cores are added to the system.
This paper is organized as follows. In Section II, some
related articles are reviewed. Section III briefly
describes cache size and cache locking impacts on
performance and power consumption. Proposed cache
modeling strategy for embedded multicore systems is
presented in Section IV. In Section V, the simulation
details are briefly discussed. Some important
simulation results are depictedin Section VI. Finally,
this work is concluded in Section VII.

II. RELATED WORK
Some relevant articles are discussed in this section.

Early Estimation Of Cache Properties For Multicore Embedded Processors

Proceedings of ISERD International Conference, Bangkok, Thailand, 16th May 2015, ISBN: 978-93-85465-12-3

46

In [1], the technical challenges associated with the
integration of homogeneous and heterogeneous
multiple cores in embedded systems is elucidated.
However, this book does not provide a viable way to
make early estimation on future embedded systems
design.
The impact of cache parameters on the power
consumption and performance of general purpose
multicore systems is investigated in [4]. Results show
that cache parameters and the application code size
have impact on total power consumption and mean
delay per task. This approach is not focused on
designing embedded systems and does not cover the
cache locking aspect.
Issues related to cache locking at level-1 and level-2
caches are discussed in [11]. Entire (100% of the cache
size) level-1 cache locking is not efficient for some
applications, especially when the data size to be
locked is smaller compared to the cache size.
An algorithm for off-line selection of the contents of
two on-chip memories, locked caches and scratchpad
memories, are proposed in [12]. Experimental results
show that the algorithm generates good ratios of
on-chip memory accesses on the worst-case execution
path. However, worst-case performance with locked
caches may degrade with large cache lines due to
cache pollution. In [13], a memory hierarchy is
proposed to provide high performance combined with
high predictability for complex systems. In [14],
various algorithms to select a set of instructions to be
locked in cache are compared. The solutions
mentioned in [12-14] show that performance
improvement can be used to assess a tight upper bound
of the response time of tasks. However, these
techniques are developed for single-core systems and
not suitable for contemporary multicore embedded
systems. Also, these techniques are not useful to
estimate power consumption, a crucial design factor
for embedded systems. Therefore, these techniques are
not adequate to analyze the performance, power
consumption, and predictability of advanced
embedded systems.

III. CACHE SIZE AND CACHE LOCKING

Cache size has direct impact on cache(capacity)
misses. Similarly, cache locking has significant impact
on cache misses. Future embedded multicore
architectures are expected to have multilevel cache
memory organizations. Therefore, we briefly describe
the multicore architectures before we present the
proposed strategy to model and simulate multicore
cache subsystem.

A. Contemporary Multicore Cache Organizations
Before year 2005, single-core processors dominated
the processor market. AMD produced Athlon 64 X2
(dual-core) CPU in year 2005. Since year 2006,
multicore processors are available commercially.
Today, there are so many multicore chips available
from different chip vendors. As Intel and AMD are the

two mainstream chip manufacturers of multicore
processors, we choose two of their commonly
available multicore processors, Intel Xeon quad-core
(with shared CL2) and AMD Opteron quad-core (with
shared CL3), to discuss. However, we model only
Intel-like quad-core system with shared CL2 cache.
Shared CL2 in Multicore Architecture:There are
many different types of multicore processors from
Intel. Figure 1 illustrates Intel Xeon DP like
processors. Xeon DP is a homogenous quad-core
processor. It holds a shared memory model with
private CL1s and shared CL2. Each private CL1 is
split into I1 (size 128 KB) and D1 (size 128 KB) and
shared CL2 is unified (size 8 MB) [15]. We implement
our proposed cache locking at CL2 in Intel-like
architecture.

Figure 1: Intel-like quad-core architecture with private CL1

and shared CL2

Shared CL3 in Multicore Architecture: Like Intel,
AMD also has many different types of multicore
processors. Figure 2 depicts AMD Opteron (quad-core)
like processors. Opteron quad-core has a shared
memory model with private CL1s, private CL2s, and
shared CL3. Each private CL1 is split into I1 (size 256
KB) and D1 (size 256 KB), private CL2 is unified
(size 2 MB), and shared CL3 is unified (size up to 4
MB) [16]. We implement our proposed cache locking
at CL3 in AMD-like architecture.

Figure 2: AMD-like quad-core architecture with private CL1

and CL2 and shared CL3

B. Cache Locking
Cache locking is a technique to hold some or all blocks
in a cache during the entire execution time. This
mechanism prevents some or all of the instruction
cache (or data cache) from being overwritten by the
cache replacement policy. It is proven to improve
execution time predictability and performance/power
ratio in single-core and multicore systems. There are
two types of cache locking: lock either an entire cache
or individual ways within the cache [17]. In way

Early Estimation Of Cache Properties For Multicore Embedded Processors

Proceedings of ISERD International Conference, Bangkok, Thailand, 16th May 2015, ISBN: 978-93-85465-12-3

47

locking, only a portion of the cache (one or more, not
all, ways within the cache) is locked and the remaining
unlocked cache performs normally. Unlike entire
cache locking (where all entries in a cache are locked
and cannot be replaced during the execution time),
invalid entries in way locking are accessible and
available for data placement. Way cache locking is
suitable for most processors and applications. Cache
hits are treated in the same manner as hits to an
unlocked cache. Cache locking can be implemented at
level-1 or at a higher level. In multicore systems,
cache locking at shared cache (like CL2 or CL3) is
preferable, because it helps reduce cache
inconsistency problem and keeps cache locking
scheme simple and scalable.
In this work, we concentrate on shared CL2 cache
modeling for embedded multicore systems.

IV. PROPOSED CACHE MODELING

STRATEGY

In this section, we present our proposed shared cache
modeling strategy for multicore embedded systems.
According to this methodology, shared CL2 cache size
can be changed and/or some blocks (i.e., ways) in

shared CL2 cab be locked. Memory blocks are
randomly selected for cache locking. The decision
about shared cache size and/or locking is done at the
master core (at CPU level) before the jobs are actually
assigned to the cores. If it is decided to implement
cache locking, selected blocks are locked at CL2.
There is no cache locking at core level in CL1 (i.e., in
I1 or D1). The locked cache remains locked until all
the jobs are completed. Figure 3 illustrates proposed
cache locking strategy. Depending on the job
properties and available cores, jobs are selected for
processing. Selected jobs are assigned among the
cores and each core is preloaded according to the
assigned job. Each core completes its job
independently. To calculate average delay per task, the
maximum delay is considered for each batch of jobs.
To calculate total power, power consumed by each
core to complete all tasks is considered. After
completion of a batch of jobs, another batch is
selected. At that time, caches are re-preloaded
according to the newly selected jobs. Mean delay per
task is obtained by dividing the total delay by the
number of tasks. Total power consumption is obtained
by adding all the power consumed by all the tasks of
all jobs.

Figure 3: Work flow diagram of shared cache locking strategy for N-core architecture

Early Estimation Of Cache Properties For Multicore Embedded Processors

Proceedings of ISERD International Conference, Bangkok, Thailand, 16th May 2015, ISBN: 978-93-85465-12-3

48

V. SIMULATION DETAILS

In this work, we introduce a simulation methodology
to determine the right cache memory organization to
facilitate the design of future embedded multicore
systems. In this section, we briefly discuss the
simulation details including the assumptions,
workloads, and input/output parameters.
A. Assumptions

Important assumptions include:
 Cache modeling at shared CL2 (for Intel-like

quad-core) is considered.
 The master core (at CPU level) decides the CL2

cache size and whether cache locking should be
implemented or not at shared CL2.

 Memory blocks are selected randomly for cache
preloading and cache locking.

 All cores are homogenous. CL1 cache
parameters used are the same for all cores of a
multicore architecture.

 The delay introduced by the bus that connects
shared CL2 to main memory is considered 15
times longer than the delay introduced by the bus
that connects caches (CL1 to CL2).

 Write-back memory update policy is used.
B. Workloads
We consider workloads from the following popular
applications in the work: FFT (Fast Fourier
Transform), GIF (Graphics Interchange Format),
JPEG (Joint Photographic Experts Group), MPEG
(Moving Picture Experts Group)-3, and MPEG-4.
Here, FFT is the smallest application (with code size
2.34 KB) and MPEG-4 is the biggest application (with
code size 91.83 KB). We use VisualSim tool [18] to
develop the modeling platform.
C. Input and Output Parameters
Important input parameters are shown in Table 1.

Table 1: Input parameters

Output parameters we obtain from VisualSim are
mean delay per task (to represent performance) and
total power consumed by the system. Delay is the time
between the start of execution of a task and the end.
Mean delay is the average delay of all the tasks.

VI. RESULTS ANDDISCUSSION

In this section, we present some important simulation
results showing the impact of CL2 cache size and
cache locking on performance and power
consumption. We simulate a quad-core embedded
system using FFT, GIF, JPEG, MPEG-3, and MPEG-4

workloads. First, we discuss the impact of shared CL2
cache size, followed by the impact of shared CL2
cache locking.
A. Shared L2 Cache Size
The capacity misses should decrease with the increase
of cache size. We examine the phenomenon: how
shared CL2 cache size impacts on mean delay per task
and total power consumption (and shared CL2 cache
locking is applied). Figures 4 and 5 illustrate the
average delay per task and total power consumption,
respectively, for various CL2 cache size starting at 32
KB. Results due to JPEG and MPEG-3 are excluded,
because JPEG behaves almost like GIF and MPEG-3
behaves almost like MPEG-4. Experimental results
show that for CL2 cache size 32 KB to 128 KB, mean
delay per task and total power consumption for
MPEG-4 decrease significantly when we increase
cache size and/or move from no locking to 25%
locking. Only for CL2 cache size 32 KB, mean delay
per task and total power consumption for GIF decrease
when 25% locking is applied. However, CL2 cache
size/locking has no positive impact on mean delay per
task and total power consumption for FFT. This is
because FFT code totally fits in CL2 and the impact of
cache locking depends on whether the code fits in the
cache or not. Increasing CL2 size beyond 128 KB has
no positive impact (consumes more power without
reducing the delay).

Figure 4: Impact of total shared CL2 cache size on mean delay

per task

Figure 5: Impact of total shared CL2 cache size on total power

consumption
The optimal performance/power (i.e., delay/power)

Early Estimation Of Cache Properties For Multicore Embedded Processors

Proceedings of ISERD International Conference, Bangkok, Thailand, 16th May 2015, ISBN: 978-93-85465-12-3

49

ratio is found for 128 KB shared CL2 for all the
workloads (see Figure 6). For CL2 bigger than 128
KB, more power is consumed but the mean delay per
task is not reduced.

Figure 6: Impact of total shared CL2 cache size on mean delay

per task / total power consumption ratio

B. Shared L2 Cache Locking
Figure 7 shows mean delay per task for all five
workloads with various locked CL2 cache size (0% to
50% locking). Simulation results show that cache
locking at shared CL2 has significant impact on large
applications (like MPEG-3 and MPEG-4) than small
applications (like FFT). For MPEG-4, mean delay per
task decreases sharply as we move from no locking to
25% locked CL2 cache size; mean delay per task start
increasing as we move beyond 25% CL2 locking. The
impact of shared CL2 cache locking on mean delay for
GIF and JPEG is not very significant. For FFT, there is
no positive impact of shared CL2 cache locking on
mean delay and power consumption. Again, this is
because FFT code entirely fits inside CL2 cache but
MPEG-4 does not.

Figure 7: Impact of locked CL2 cache size on mean delay per

task
Similarly, cache locking at shared CL2 has significant

impact on total power consumption for large
applications (like MPEG-4) than small applications
(like FFT) as shown in Figure 8. However, cache
locking beyond 25% CL2 size is not beneficial for any
workloads.

Figure 8: Impact of locked CL2 cache size on total power

consumption

According to shared CL2 cache locking results, the
optimal performance (delay)/power ratio is obtained
for 25% cache locking for all the workloads (see
Figure 9).

Figure 9: Impact of locked shared CL2 cache size on mean delay

per task / total power consumption ratio

CONCLUSIONS

The presence of multilevel caches pose tremendous
challenge in designing state-of-the-art embedded
multicore systems as caches are power hungry and
make thread level parallelism difficult. Therefore, the
caches memory organization needs to be selected
carefully before building the multicore embedded
systems. In this paper, we present a simulation

Early Estimation Of Cache Properties For Multicore Embedded Processors

Proceedings of ISERD International Conference, Bangkok, Thailand, 16th May 2015, ISBN: 978-93-85465-12-3

50

methodology to early estimate the effective cache
parameters (like cache size), organizations (like shared
CL2), and techniques (like cache locking) for target
applications to facilitate the design of future
embedded multicore systems. An Intel-like quad-core
with shared CL2 is simulated using FFT, GIF, JPEG,
MPEG-3, and MPEG-4 workloads. Results (mean
delay per task and total power consumption) are
obtained by varying CL2 cache size and locked CL2
cache size.
As shared CL2 cache size is normally bigger than
CL1, more blocks (that might create cache misses) can
be stored and locked in CL2. Consequently, execution
time predictability is enhanced. Cache locking at
higher level shared cache gives an opportunity to make
the system almost entirely predictable, if needed, by
locking more blocks. In this experiment, 128 KB
shared CL2 cache provides the optimal mean delay per
task and total power consumption for the target
applications (see Figures 4, 5, and 6). Simulation
results also indicate that 25% CL2 cache locking is the
best in this experiment. Locking more than 25%
shared CL2 may cause additional delay and may need
additional power (see Figures 7, 8, and 9). Finally,
albeit both mean delay per task and total power
consumption decrease when shared CL2 cache size is
increased and/or cache locking is applied, it is noted
that the impact of shared CL2 on power consumption
is more significant than that on delay.
We plan to explore the impact of shared cache at
various levels (like shared CL2 and shared CL3) on
performance, total power consumption, and
predictability for multicore embedded systems in our
next endeavor.

REFERENCES

[1] G. Kornaros, “Title Multi-Core Embedded Systems,” CRC

Press, 2010.
[2] G. Reinman and N.P. Jouppi, “An Integrated Cache Timing

and Power Model,” Western Research Laboratory, California,
2000.

[3] D. Fittes, “Using Multicore Processors in Embedded
Systems,”Hitex UK Ltd. Warwick University Science Park,
2009.

[4] A. Asaduzzaman, M. Rani, and F.N. Sibai, “On the Design of
Low-Power Cache Memories for Homogeneous Multi-Core
Processors,” 22nd International Conference on
Microelectronics (ICM'10), pp. 387-390, 2010.

[5] H.V. Caprita and M. Popa, “Design methods of multithreaded
architectures for multicore microcontrollers,” 6th IEEE
International Symposium on Applied Computational
Intelligence and Informatics (SACI-2011), pp. 427-432, 2011.

[6] J. Chen, W. Watson III, and W. Mao, “Multi-Threading on
Multi-Core Processors,” Scientific Computing Group, IT
Division Jefferson Lab, 2006.

[7] “Multi-core Processor from Wikipedia,” Wikipedia.com,
2011, http://en.wikipedia.org/wiki/Multi-core_processor
(accessed on April 3, 2015)

[8] W.C. Ku, S.H. Chou, J.C. Chu, C.L. Liu, T.F. Chen, J.I. Guo,
and J.S. Wang, “VisoMT: A Collaborative Multithreading
Multicore Processor for Multimedia Applications With a Fast
Data Switching Mechanism,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 19, pp. 1633-1645,
2009.

[9] R.M Ramanathan, “Intel Multi-Core Processors: Making the
Move to Quad-Core and Beyond,” Intel White Paper, 2006.

[10] V. Suhendra and T. Mitra, “Exploring Locking & Partitioning
for Predictable Shared Caches on Multi-Cores,” DAC'2008,
Anaheim, CA, 2008.

[11] C. Harrison, “Programming the cache on the PowerPC
750GX/FX - Use cache management instructions to improve
performance. IBM Microcontroller Applications Group,”
2005,http://www-128.ibm.com/developerworks/library/pa-pp
ccache.html (accessed on April 3, 2015)

[12] I. Puaut and C. Pais, “Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison,”Design,
Automation & Test in Europe Conference & Exhibition
(DATE'07), pp. 1-6, 2007.

[13] E. Tamura, F. Rodríguez, J.V. Busquets-Mataix, and A.M.
Campoy, “High Performance Memory Architectures with
Dynamic Locking Cache for Real-Time Systems,”
Proceedings of the 16th Euromicro Conference on Real-Time
Systems,Italy, pp. 1-4, 2004.

[14] E. Tamura, J.V. Busquets-Mataix, J.J.S. Martin, and A.M.
Campoy, “A Comparison of Three Genetic Algorithms for
Locking-Cache Contents Selection in Real-Time Systems,”
Proceedings of the Int’l Conference in Coimbra, Portugal,
2005.

[15] V. Romanchenko, “Evaluation of the multi-core processor
architecture Intel core: Conroe, Kentsfield…,”
Digital-Daily.com, 2006.

[16] V. Romanchenko, “Quad-Core Opteron: architecture and
roadmaps,” Digital-Daily.com, 2006.

[17] “MPC8272 PowerQUICC II – Family Reference Manual,”
Freescale.com, 2008,http://www.freescale.com/files/32bit/
doc/ref_manual/MPC8272RM.pdf (accessed on April 3, 2015)

[18] “VisualSim (Mirabilisdesign) – a system-level simulator,”
Mirabilisdesign.com, 2015, http://www.mirabilisdesign.com
(accessed on April 3, 2015)

