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Abstract—The state-of-the-art embedded systems are expected to have multicore processors as multicore architecture 
provides high performance to power ratio. Although cache improves the overall performance, designing multicore embedded 
processors with multilevel caches is a great challenge. Caches make thermal constraint crucial; parallel thread execution 
difficult; and timing unpredictability even worse. An effective early estimation technique can be very valuable to design 
complex systems like multicore embedded systems. In this paper, we propose a simulation methodology to determine the 
impact of cache on performance, power consumption, and predictability to facilitate the design of future embedded multicore 
systems. Effective cache parameters (such as cache size), organizations (such as shared CL2), and techniques (such as cache 
locking) for target applications can be predetermined using this method. We model a quad-core embedded system with two 
levels of caches (where CL2 is shared). By varying total CL2 cache size and locked CL2 cache size, we run the simulation 
program using popular FFT, GIF, JPEG, MPEG-3, and MPEG-4 workloads. Simulation results indicate that the optimal value 
of CL2 is 128 KB in this experiment for the selected applications when average memory access time (i.e., delay) per task and 
total power consumption are concerned. Experimental results also indicate that up to 25% CL2 cache locking is helpful for the 
simulated system. It is observed that both mean delay per task and total power consumption decrease when cache size is 
increased and/or 25% cache locking is applied; however, the impact of shared CL2 cache on power consumption is more 
significant than that on mean delay. 
 
Index Terms—Average Memory Access Time (Delay), Cache Memory, Embedded Systems, Multicore Processors, Power 
Consumption.  
 
I. INTRODUCTION 
 
To move from current state-of-the-art embedded 
systems to the advanced level, embedded systems 
design methodology must need supports from early 
estimation techniques. Due to requirements for more 
processing speed and advancement in semiconductor 
technology, future embedded systems should have 
multicore processor. Currently available single-core 
based modeling and simulation techniques are not 
adequate to design modern multicore embedded 
systems [1-4]. According to multicore architecture 
design techniques, four cores running at one fourth of 
the frequency can approach the performance of a 
single-core running at full frequency, while the 
quad-core power consumption is less.  
As the number of cores in the processors is increasing, 
software applications are having more and more 
threads to take advantage of the available cores [5-8]. 
Multicore architecture in embedded systems has 
proven the potential of supporting multithreaded 
parallel processing. Multicore processors are 
frequently deployed with multilevel cache memories 
[9]. Parallel thread execution to achieve the best 
performance in such a multicore system is difficult as 
it relates to cache sharing. Multilevel caches also make 
the execution time unpredictability worse. Therefore, 
supporting real-time and/or multithreaded applications 
on multicore embedded systems with multilevel 
caches becomes an enormous challenge. In a real-time 
embedded system, hardware requests must be satisfied 
in a timely manner regardless of the system load. In a 
simultaneous multithreading system, multiple threads  

 
should be executing (on multiple cores) at the same 
processor cycle. Real-time and/or multithreaded 
applications can be efficiently supported on multicore 
systems by effectively using the cache memory 
subsystem. Studies show that bigger cache size may 
improve performance and predictability; however, it 
needs more power and area, which is not desirable in 
embedded system design. Recent studies also show 
that smaller amount of cache locking may improve 
performance/power ratio and predictability [10]. 
Cache locking allows preloading memory blocks into 
the cache and subsequently prevents these blocks from 
being replaced during runtime. Cache locking at CL1 
has some limitations. For example, some processors 
(like PowerPC 750GX) do not permit entire cache 
locking at CL1 [11]. Cache locking at shared level 
(like CL2 or CL3), specifically for multicore 
architecture, may be a promising alternative. This 
cache locking strategy is scalable as no additional 
logic is needed (to the cache locking mechanism) if 
more cores are added to the system.  
This paper is organized as follows. In Section II, some 
related articles are reviewed. Section III briefly 
describes cache size and cache locking impacts on 
performance and power consumption. Proposed cache 
modeling strategy for embedded multicore systems is 
presented in Section IV. In Section V, the simulation 
details are briefly discussed. Some important 
simulation results are depictedin Section VI. Finally, 
this work is concluded in Section VII. 
 
II. RELATED WORK 
Some relevant articles are discussed in this section.  



Early Estimation Of Cache Properties For Multicore Embedded Processors 

Proceedings of ISERD International Conference, Bangkok, Thailand, 16th May 2015, ISBN: 978-93-85465-12-3 

46 

In [1], the technical challenges associated with the 
integration of homogeneous and heterogeneous 
multiple cores in embedded systems is elucidated. 
However, this book does not provide a viable way to 
make early estimation on future embedded systems 
design. 
The impact of cache parameters on the power 
consumption and performance of general purpose 
multicore systems is investigated in [4]. Results show 
that cache parameters and the application code size 
have impact on total power consumption and mean 
delay per task. This approach is not focused on 
designing embedded systems and does not cover the 
cache locking aspect. 
Issues related to cache locking at level-1 and level-2 
caches are discussed in [11]. Entire (100% of the cache 
size) level-1 cache locking is not efficient for some 
applications, especially when the data size to be 
locked is smaller compared to the cache size.  
An algorithm for off-line selection of the contents of 
two on-chip memories, locked caches and scratchpad 
memories, are proposed in [12]. Experimental results 
show that the algorithm generates good ratios of 
on-chip memory accesses on the worst-case execution 
path. However, worst-case performance with locked 
caches may degrade with large cache lines due to 
cache pollution. In [13], a memory hierarchy is 
proposed to provide high performance combined with 
high predictability for complex systems. In [14], 
various algorithms to select a set of instructions to be 
locked in cache are compared. The solutions 
mentioned in [12-14] show that performance 
improvement can be used to assess a tight upper bound 
of the response time of tasks. However, these 
techniques are developed for single-core systems and 
not suitable for contemporary multicore embedded 
systems. Also, these techniques are not useful to 
estimate power consumption, a crucial design factor 
for embedded systems. Therefore, these techniques are 
not adequate to analyze the performance, power 
consumption, and predictability of advanced 
embedded systems. 
 
III. CACHE SIZE AND CACHE LOCKING 
 
Cache size has direct impact on cache(capacity) 
misses. Similarly, cache locking has significant impact 
on cache misses. Future embedded multicore 
architectures are expected to have multilevel cache 
memory organizations. Therefore, we briefly describe 
the multicore architectures before we present the 
proposed strategy to model and simulate multicore 
cache subsystem. 

A. Contemporary Multicore Cache Organizations 
Before year 2005, single-core processors dominated 
the processor market. AMD produced Athlon 64 X2 
(dual-core) CPU in year 2005. Since year 2006, 
multicore processors are available commercially. 
Today, there are so many multicore chips available 
from different chip vendors. As Intel and AMD are the 

two mainstream chip manufacturers of multicore 
processors, we choose two of their commonly 
available multicore processors, Intel Xeon quad-core 
(with shared CL2) and AMD Opteron quad-core (with 
shared CL3), to discuss. However, we model only 
Intel-like quad-core system with shared CL2 cache. 
Shared CL2 in Multicore Architecture:There are 
many different types of multicore processors from 
Intel. Figure 1 illustrates Intel Xeon DP like 
processors. Xeon DP is a homogenous quad-core 
processor. It holds a shared memory model with 
private CL1s and shared CL2. Each private CL1 is 
split into I1 (size 128 KB) and D1 (size 128 KB) and 
shared CL2 is unified (size 8 MB) [15]. We implement 
our proposed cache locking at CL2 in Intel-like 
architecture. 

 

 
Figure 1: Intel-like quad-core architecture with private CL1 

and shared CL2 
 

Shared CL3 in Multicore Architecture: Like Intel, 
AMD also has many different types of multicore 
processors. Figure 2 depicts AMD Opteron (quad-core) 
like processors. Opteron quad-core has a shared 
memory model with private CL1s, private CL2s, and 
shared CL3. Each private CL1 is split into I1 (size 256 
KB) and D1 (size 256 KB), private CL2 is unified 
(size 2 MB), and shared CL3 is unified (size up to 4 
MB) [16]. We implement our proposed cache   locking 
at CL3 in AMD-like architecture. 

 
Figure 2: AMD-like quad-core architecture with private CL1 

and CL2 and shared CL3 
 

B. Cache Locking 
Cache locking is a technique to hold some or all blocks 
in a cache during the entire execution time. This 
mechanism prevents some or all of the instruction 
cache (or data cache) from being overwritten by the 
cache replacement policy. It is proven to improve 
execution time predictability and performance/power 
ratio in single-core and multicore systems. There are 
two types of cache locking: lock either an entire cache 
or individual ways within the cache [17]. In way 
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locking, only a portion of the cache (one or more, not 
all, ways within the cache) is locked and the remaining 
unlocked cache performs normally. Unlike entire 
cache locking (where all entries in a cache are locked 
and cannot be replaced during the execution time), 
invalid entries in way locking are accessible and 
available for data placement. Way cache locking is 
suitable for most processors and applications. Cache 
hits are treated in the same manner as hits to an 
unlocked cache. Cache locking can be implemented at 
level-1 or at a higher level. In multicore systems, 
cache locking at shared cache (like CL2 or CL3) is 
preferable, because it helps reduce cache 
inconsistency problem and keeps cache locking 
scheme simple and scalable.  
In this work, we concentrate on shared CL2 cache 
modeling for embedded multicore systems. 
 
IV.  PROPOSED CACHE MODELING 

STRATEGY 
 
In this section, we present our proposed shared cache 
modeling strategy for multicore embedded systems. 
According to this methodology, shared CL2 cache size 
can be changed and/or some blocks (i.e., ways) in 

shared CL2 cab be locked. Memory blocks are 
randomly selected for cache locking. The decision 
about shared cache size and/or locking is done at the 
master core (at CPU level) before the jobs are actually 
assigned to the cores. If it is decided to implement 
cache locking, selected blocks are locked at CL2. 
There is no cache locking at core level in CL1 (i.e., in 
I1 or D1). The locked cache remains locked until all 
the jobs are completed. Figure 3 illustrates proposed 
cache locking strategy. Depending on the job 
properties and available cores, jobs are selected for 
processing. Selected jobs are assigned among the 
cores and each core is preloaded according to the 
assigned job. Each core completes its job 
independently. To calculate average delay per task, the 
maximum delay is considered for each batch of jobs. 
To calculate total power, power consumed by each 
core to complete all tasks is considered. After 
completion of a batch of jobs, another batch is 
selected. At that time, caches are re-preloaded 
according to the newly selected jobs. Mean delay per 
task is obtained by dividing the total delay by the 
number of tasks. Total power consumption is obtained 
by adding all the power consumed by all the tasks of 
all jobs. 

Figure 3: Work flow diagram of shared cache locking strategy for N-core architecture 
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V. SIMULATION DETAILS 
 
In this work, we introduce a simulation methodology 
to determine the right cache memory organization to 
facilitate the design of future embedded multicore 
systems. In this section, we briefly discuss the 
simulation details including the assumptions, 
workloads, and input/output parameters. 
A. Assumptions 

Important assumptions include: 
 Cache modeling at shared CL2 (for Intel-like 

quad-core) is considered.  
 The master core (at CPU level) decides the CL2 

cache size and whether cache locking should be 
implemented or not at shared CL2. 

 Memory blocks are selected randomly for cache 
preloading and cache locking. 

 All cores are homogenous. CL1 cache 
parameters used are the same for all cores of a 
multicore architecture. 

 The delay introduced by the bus that connects 
shared CL2 to main memory is considered 15 
times longer than the delay introduced by the bus 
that connects caches (CL1 to CL2). 

 Write-back memory update policy is used. 
B. Workloads 
We consider workloads from the following popular 
applications in the work: FFT (Fast Fourier 
Transform), GIF (Graphics Interchange Format), 
JPEG (Joint Photographic Experts Group), MPEG 
(Moving Picture Experts Group)-3, and MPEG-4. 
Here, FFT is the smallest application (with code size 
2.34 KB) and MPEG-4 is the biggest application (with 
code size 91.83 KB). We use VisualSim tool [18] to 
develop the modeling platform. 
C. Input and Output Parameters 
Important input parameters are shown in Table 1. 
 

Table 1: Input parameters 

 
 
Output parameters we obtain from VisualSim are 
mean delay per task (to represent performance) and 
total power consumed by the system. Delay is the time 
between the start of execution of a task and the end. 
Mean delay is the average delay of all the tasks. 
 
VI. RESULTS ANDDISCUSSION 
 
In this section, we present some important simulation 
results showing the impact of CL2 cache size and 
cache locking on performance and power 
consumption. We simulate a quad-core embedded 
system using FFT, GIF, JPEG, MPEG-3, and MPEG-4 

workloads. First, we discuss the impact of shared CL2 
cache size, followed by the impact of shared CL2 
cache locking. 
A. Shared L2 Cache Size 
The capacity misses should decrease with the increase 
of cache size. We examine the phenomenon: how 
shared CL2 cache size impacts on mean delay per task 
and total power consumption (and shared CL2 cache 
locking is applied). Figures 4 and 5 illustrate the 
average delay per task and total power consumption, 
respectively, for various CL2 cache size starting at 32 
KB. Results due to JPEG and MPEG-3 are excluded, 
because JPEG behaves almost like GIF and MPEG-3 
behaves almost like MPEG-4. Experimental results 
show that for CL2 cache size 32 KB to 128 KB, mean 
delay per task and total power consumption for 
MPEG-4 decrease significantly when we increase 
cache size and/or move from no locking to 25% 
locking. Only for CL2 cache size 32 KB, mean delay 
per task and total power consumption for GIF decrease 
when 25% locking is applied. However, CL2 cache 
size/locking has no positive impact on mean delay per 
task and total power consumption for FFT. This is 
because FFT code totally fits in CL2 and the impact of 
cache locking depends on whether the code fits in the 
cache or not. Increasing CL2 size beyond 128 KB has 
no positive impact (consumes more power without 
reducing the delay). 

 
Figure 4: Impact of total shared CL2 cache size on mean delay 

per task 
 

 
Figure 5: Impact of total shared CL2 cache size on total power 

consumption 
The optimal performance/power (i.e., delay/power) 
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ratio is found for 128 KB shared CL2 for all the 
workloads (see Figure 6). For CL2 bigger than 128 
KB, more power is consumed but the mean delay per 
task is not reduced. 
 

 
Figure 6: Impact of total shared CL2 cache size on mean delay 

per task / total power consumption ratio 
 

B. Shared L2 Cache Locking 
Figure 7 shows mean delay per task for all five 
workloads with various locked CL2 cache size (0% to 
50% locking). Simulation results show that cache 
locking at shared CL2 has significant impact on large 
applications (like MPEG-3 and MPEG-4) than small 
applications (like FFT). For MPEG-4, mean delay per 
task decreases sharply as we move from no locking to 
25% locked CL2 cache size; mean delay per task start 
increasing as we move beyond 25% CL2 locking. The 
impact of shared CL2 cache locking on mean delay for 
GIF and JPEG is not very significant. For FFT, there is 
no positive impact of shared CL2 cache locking on 
mean delay and power consumption. Again, this is 
because FFT code entirely fits inside CL2 cache but 
MPEG-4 does not. 
 

 
Figure 7: Impact of locked CL2 cache size on mean delay per 

task 
Similarly, cache locking at shared CL2 has significant 

impact on total power consumption for large 
applications (like MPEG-4) than small applications 
(like FFT) as shown in Figure 8. However, cache 
locking beyond 25% CL2 size is not beneficial for any 
workloads. 
 

 
Figure 8: Impact of locked CL2 cache size on total power 

consumption 
 
According to shared CL2 cache locking results, the 
optimal performance (delay)/power ratio is obtained 
for 25% cache locking for all the workloads (see 
Figure 9). 
 

 
Figure 9: Impact of locked shared CL2 cache size on mean delay 

per task / total power consumption ratio 
 
CONCLUSIONS 
 
The presence of multilevel caches pose tremendous 
challenge in designing state-of-the-art embedded 
multicore systems as caches are power hungry and 
make thread level parallelism difficult. Therefore, the 
caches memory organization needs to be selected 
carefully before building the multicore embedded 
systems. In this paper, we present a simulation 
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methodology to early estimate the effective cache 
parameters (like cache size), organizations (like shared 
CL2), and techniques (like cache locking) for target 
applications to facilitate the design of future 
embedded multicore systems. An Intel-like quad-core 
with shared CL2 is simulated using FFT, GIF, JPEG, 
MPEG-3, and MPEG-4 workloads. Results (mean 
delay per task and total power consumption) are 
obtained by varying CL2 cache size and locked CL2 
cache size.  
As shared CL2 cache size is normally bigger than 
CL1, more blocks (that might create cache misses) can 
be stored and locked in CL2. Consequently, execution 
time predictability is enhanced. Cache locking at 
higher level shared cache gives an opportunity to make 
the system almost entirely predictable, if needed, by 
locking more blocks. In this experiment, 128 KB 
shared CL2 cache provides the optimal mean delay per 
task and total power consumption for the target 
applications (see Figures 4, 5, and 6). Simulation 
results also indicate that 25% CL2 cache locking is the 
best in this experiment. Locking more than 25% 
shared CL2 may cause additional delay and may need 
additional power (see Figures 7, 8, and 9). Finally, 
albeit both mean delay per task and total power 
consumption decrease when shared CL2 cache size is 
increased and/or cache locking is applied, it is noted 
that the impact of shared CL2 on power consumption 
is more significant than that on delay.  
We plan to explore the impact of shared cache at 
various levels (like shared CL2 and shared CL3) on 
performance, total power consumption, and 
predictability for multicore embedded systems in our 
next endeavor. 
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