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Abstract - In the current era of Big Data, mutations in Business Process Management (BPM) remain poorly understood where 
organizations are confronted to a growing complexity of Business Processes (BP). Due to continuous and incessant of 
unexpected changes, Unstructured Business Processes (UBP) become the most crucial issues in the area of Big Data business 
management. The proposed approach in this paper introduces a new Machine Learning (ML) approach, able to optimize 
unexpected exceptions, and reduce time-consuming in UBP. A new Reinforcement Learning algorithm is proposed to predict 
the best action to undertake and avoid unexpected paths in a recommending aid-to-system architecture. For empirical proof, a 
simulation case study is applied with key findings and validation outcomes. The results reveal how the method can preserve 
robustness despite unpredicted alterations. Moreover, this paper provides large spectra of academic bibliography as an 
interesting background for UBP, which still a rarely discussed topic in research works. 
 
Index Terms - Prediction, Machine Learning, Big Data, Business Process Management.  
 
I. INTRODUCTION 
 
Irregularity, changing workflows, and multifaceted 
paths are the most hurdles in developing and executing 
Business Processes (BPs) [1]. Furthermore, with the 
advent of velocity in Big Data environment there is 
more complexity in executing automated workflows 
of BPs[2]. Continuous fluctuations in business 
behavior[3], integration of man-madetasks[4], 
transformations in internal services [5], changes in 
laws [6], adaptation of security rules [7], structural 
reforms in organizations [8], adaptation to unexpected 
situations are the main causes of this complexity, and 
for forth[9]. These issues have given way to a research 
problem called “Unstructured Business Process 
(UBP)” which has been the concern of some academic 
works in recent years ( [1], [10], [6]). However, 
up-to-now, research efforts still insufficient and scare 
[11]. The purpose of this paper is to bond this break in 
academic context. 
Picking the optimum action in a set of options in a BP 
has to be articulated via a strategy that aims to improve 
one or many indicators, such as the achievement ratio 
of the expected results [12], the Quality of Service 
(QoS) [13], and the time-consuming tasks [14]. To 
deal with these issues, academic efforts are releasing 
event-log orientedapproaches and process-oriented 
mining methodsthat have been usedincreasingly since 
years[15]. However, although their prevailing in the 
escaping biased execution paths and reducing 
changes-integration costs[3], these algorithms struggle 
in situations of high velocityand high-scaled of BPs 
inBig Data environments[16].  
To face both problematics of UBP and Big Data 
velocity, this paper proposesa predictive approach 
based on Reinforcement Learning (RL), one of a 
wide-used Machine Learning (ML) techniques. The 

heuristic has the ability to predict the best action to 
perform to improveBP under changing. In divergence 
with the reactive approaches that are based on 
event-logs systems mostly used in Business Process 
Reengineering (BPR)[17].Our approach is predictive 
and is connected with an engine of recommending 
aid-to-system architecture to assist BP stakeholders. 
The sections of the paper are as following: Section 
1presents an overview of relevant literature and 
research lacks in the topic. Section 2 describes the 
proposed approach. Section 4 illustrates 
experimentation with a case study and key findings. 
The final section concludes with outcomes and open 
views. 
 
II. BACKGROUND AND RESEARCH GAP 
 
A. Unstructured Business Process 
Authors in [18] cited “Real-world processes are 
sometimes executed with little structure, imperfect 
informationand unforeseen exceptions, leading to the 
emergence of UBP”. Because of the human 
participation in decision practices, and the adjustment 
of automation by irregularitiesand workarounds, 
frequent alterationshappen in BP workflows [1]. 
Real-world examples are amply: employmentin 
human resources services, Information Technology 
(IT) incidents, insurance claims management, safety 
and security rules management, medical emergency 
service, and so forth. This motivated the advent of 
research worksto deal with the issue of unstructured 
BPs as we synthetize in the following:Fluctuations in 
execution processes[1],diminutionof processes’ 
visibility[19], diminishingof efficiency 
[21],volatileprioritizing of activities[22], inability to 
sustain rapid and real-time changes [23],and so forth. 
Patterns of optimization in UBP are manifold, such as 
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the facility of tasks to circumvent automated streams 
of processes to generateunusual branches [17], and the 
possibilityto parallelize actionsin processes[6]. 
Through the examination of the state-of-the-art, we 
noticethere is a lack in a unitedconsent in UBPresearch 
works, comparing with the plenty publications in 

Business Process Improvement (BPI) ( [23], [24]), 
Business Process Reengineering (BPR) ( [17], [25]), 
and Business Process Model and Notation (BPMN) 
( [26], [27]). Indeed, publications in UBP are scarce 
and the most relevant we provideare reviewed in Table 
1. 

 
Table 1. The most relevant research works in UBP 

Reference Description Contribution 
[24] Critical analysis of integrating process Survey 
[5] Methodology to optimize UBP Methodology/approach 
[25] Framework to integrate data models and BPs Framework/model 

[26] Business mining method based on Particle 
Swarm Optimization (PSO) Methodology/approach 

[4] Business operations based on artificial 
intelligence (AI) Theoretical approach 

[27] Knowledge management in UBP Theoretical approach 

[20] Process mining with Artificial Neural Networks 
(ANN) and Support Vector Machines (SVM) Literature review 

[7] Approach in formal language (Object Z) and 
Petri Net Framework/model 

[1] Approach ofBehavioral Process Mining (BPM) 
to optimise sub-processes Framework/model 

[19] Predictive approach improve process changes. Methodology/approach 
 

 
As shown in table 1, different approaches exist to face 
the challenge of unstructured workflows in UBP, 
however, there is none clear-cut and comprehensive 
contribution. The most considerable among these 
them may be the analytical methods such as predictive 
approaches [19], [26], [32], [4], and[20]. As proposed 
in these works, we propose in this paper a 
prediction-oriented approach based on Machine 
Learning (ML).  
 
B. Prediction in Unstructured Business Process 
Predictive approaches aim to foresee actions before 
they occur so that problemscan be avoided and/or 
resolved proactively [33]. Proactivity is useful in 
facing the challenge of unstructured workflows in 
UBP where paths maybe predictively analysed and 
recommended by the algorithm. However, when 
investigating the academic literature in this topic, we 
distinguish two eras:  
1. The era before the advent of Big Data Analytics 

(BDA) where research in applying predictive 
approacheswereclearly weakin BPM 
([19]).Research in thiseraaredeal with techniques 
that acquire knowledge from experience 
(Schwartz., 2014). Such techniques have the 
ability to make predictions on data generated by 
BPs execution threads and events,and 
accordinglyadjust the behaviour of BPs in future 
actions[34].  

2. The era Big Data Analytics where machine 
learning approaches play an important role in 
analysing BPM issues in connection with data 
science[35]. In Big Data context, predictive 
approaches offerautomation and proactivity with 

more facility and lower costs compared to the 
traditional era before the Big Data where the main 
purpose is industrialisingand optimizing BPs. In 
Big Data context, predictive machine learning 
approaches allow agilityin integrating in a 
continuous way. The management mode is driven 
not just by history but also by the analytical 
predictive know-how[35]. 

 
III. PROPOSED APPROACH 
 
A. Proposed Version-Oriented Q-learning 
Algorithm 
The policy selection in alternative options in UBPcan 
beprocessed as a multiple-stages decision-making 
problem [33], [14]. Indeed, RL belongs to the ML 
approaches that are suitable to address multiple-stages 
decision-making concerns to recommend the best next 
action to perform through experience[34]. In the 
mapping of RL algorithm to perform in modelling 
UBP, we usually define self-behaviour agents in 
decision points of tasks. The agenthas the ability to 
select the best path among the set of optional paths 
based on its experience. In the complete solution, we 
propose a recommendation system for UBP users with 
the using of an engine based on autonomous agents 
with RL algorithm. 
 
The engine is embedded in the Information System (IS) 
where the BPM thread is executed. It follows two 
stages to be performed in parallel as illustrated in 
figure 1: 
3. Training stage: The agents learn from system 

through experience (paths in the decision points 
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of the UBP), 
4. Service stage: the IS uses the recommendations 

coming from the agents in the engine (outcome of 
the training stage).      

 

 
Figure 1. Proposed solution based on RL approach (mapping and recommendation engine) 

 
Q-learning is the most common RL algorithm [35] 
despite the advent ofan assortment of variants in 
literature such as deep Q-Learning in [36], double 
Q-learning in [37], distributed Q-learning in [38]. As a 
reminder, in the following the formal equations of the 
q-learning algorithm: 
 
Q ←  Q +  α . (r +  γ .  maxh୧ୱ୲୭୰୷(Q) −  Q୭୪ୢ)  
.……………(2) 
Where: 
α∈[-1,1] is the learning rate,  
γ∈[-1,1] is the discount of rewards. 
 
However, in the application onUBP, the situation is 
challenging as the learnt information may be 
overturned because of alterationsof new versions in 
the workflow of the BP. Therefore, in UBP, the space 
of agent’s states may be vast and rewards may be 
infrequent. In this condition, the learningstage may be 
disparate. For this reason, we propose a new variant to 
adapt the q-learning algorithm to the changing 
versions of the UBP workflows and thus we propose a 
version-oriented q-learning.  
 
The purpose in our version-oriented algorithm is that 
the learning rate α is reinitialized at the points where 
the workflow changes. 
 
B. Proposed Recommending Engine 
As aforementioned, we propose a framework of 
recommending as an engine based on a set of 

self-behavior agents that are able to learn from the 
system (invoving human users in the UBP) and thus 
optimize the decision policy (figure 1). Agents in the 
engine have the facility to handle inactive objects (e.g, 
emails, files, etc.) and activatespecific events (e.g, 
‘sending an email’, ‘pushing a notification’, and 
‘recording a voice’, etc.), after whichthey obtain 
rewards.  
About the assessment of rewards, it is common to 
associate rewards with Key Performance Indicators 
(KPI) as proposed in [39], and [40]. Likewise, we 
propose to integrate the KPIs in the rewarding system 
as formularized in the following: 
 
r =  ∑ f୧(KPI୧)୬

୧  ..……… ………………..……(3) 
Where : 
{KPIଵ, KPIଶ, … , KPI୬}isthe set of KPIs in the UBP. 
{fଵ, fଶ, … , f୬}are linear positive functions. 
By introducing formula (3) in the main formula of 
Q-learning (2), we obtain the formula 4 to compute the 
Q values: 
 
Q ←  Q +  α୴ . (∑ f୧(KPI୧)୬

୧ +  γ .  maxh୧ୱ୲୭୰୷(Q)−
 Q)..…………(4) 
Where 
α୴   ∈ [−1,1]is the variable learning rate withα୴′ =
1   ifv′ > v. 
An overview of the engine’s structure is illustrated 
through the UML class diagram in figure 2. The chart 
sketches the main classes: agents, events, roles, 
learning, and the system.   
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Figure 2. UML class diagram of the proposed engine 

 

 
Figure 3. Illustration of the case study (insurance claim BP) 

 
IV. APPLICATIVE CASE STUDY: INSURANCE CLAIM  BP 
 
Figure 3outlinesour case study for experimentation 
trials. The case illustrates the insurance claim BP. 
Itshows the challenge of UBP with options and 
changing bifurcating paths produced by users (humans) 
as they participate in the decision-making points. 
During experimentation, we selected a data set of 
real-world customer files in an insurance claim service 
belonging to the company AXA (France). The 
assessed values of rewards following the formula (X) 
are illustrated in figure 4. Unfortunately, the detailed 

experimentation scenarios and the data set tables 
exceed the limit of this paper. Therefore, for 
illustrative reason and to avoid extensive details we 
picked up only 5 iterations for one customer file.  
As illustrated in figure 3, 5 main processes (activities) 
exist ( P1, P2, … , P5 )with 18 Decision Points (DP) 
( DP. a1.1, DP. a1.2, . . . , DP. a5.1 ). All the decision 
points are automated with the option for the user 
(human) to sidestep the transition a2.5t -to- a4.1. as 
modelled in the paths-tree in figure 4. 
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Figure 4. Tree-paths of the case study (5 first iterations)  

 
As we observe, the rewards are different in following 
path 1 or path 2 for the illustrative 5 first iterations. 
This makes difference in the behavior of the agent at 
this decision point when it recommends to the user. In 
this illustrative situation, the agent recommends path 2 
as it collects more positive rewards.  
 
CONCLUSION AND OUTLOOK 
 
Althoughthe multiple efforts of automation and 
reengineering in BPM, research efforts still in 
earlyprogress where some challenging issuespersist 
such as unstructured business processes. To fill this 
gap, this paper proposes apredictive approach based 
on reinforcement learning. The technique is a 
version-oriented Q-learning algorithm able to provide 
flexibility and elasticity to face continuous changes in 
the UBP. The algorithm is reified by autonomous 
agents that are actively interacting in the core of an 
engine used as recommendation system for BPM 
users.  
 
A case study of insurance claim BP in AXA company 
is considered. The case demonstrates the achievability 
of the proposed approach. The outcomes of this 
introductive research paper is very promising and 
contributes to follow in the investigations of applying 
predictive approaches in UBP. As well, in the 
continuation velocity of data in such environment 
would highlight the reliability of our approach in a 
high-scalable context. 
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