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Abstract - For a two-body system, we derive expressions for the secular, long periodic and high frequency effects caused on 
to the semi-major axis of the secondary body due to the emission of gravitational waves. This is possible by considering the 
time rate of change of the total energy of the system, and substituting for the energy loss due the emission of gravitational 
waves. Next, we convert the time rate of change of the semimajor axis as a function of the orbital elements using standard a 
celestial mechanics approach, where the inverse powers or the orbital radial vector r is written as a function of the orbital 
elements with the help of the eccentricity functions G(e). We apply our result to Mercury/Sun system, and the secular time 
rate of change of the semi-major axis has been found to be the order -1.66010-12 m/y. In the case where the primary is a 
super massive black hole (SBH) the secular semimajor axis time rate of change of the secondary of eccentricity 0.9 is equal 
to -23 m/y. In the case of Mercury/Sun, this secular change is an extremely small and it cannot be easily detected by today’s 
Earth based technology. The secular rate change related to the SBH, can be probably detected by a future space technology. 
Therefore, such two-body system where the primary has mass equal to that of the Sun does not really constitute a good 
candidate for observing the quadrupole radiation effects on the semimajor of the orbital body. On the other hand, SBH will 
constitute better candidates if new space-based technologies are to be in effect in the nearest future. 
 
 
I. INTRODUCTION 
 
One of the most interesting predictions of Einstein’s 
general theory of relativity and its field equations is 
that associated with the existence of gravitational 
waves. The experimental detection of the 
gravitational radiation is extremely difficult due to 
the weak coupling between matter and gravitation.  A 
simple periodic source of gravitational waves is the 
rotating quadrupole. gives the total energy radiated by 
such a system to be (Ohanian 1994): 
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where μνQ is the contravariant quadrupole moment 

tensor components defined as follows (ibid, 1994): 
 
      32    3 dxxρδrxxQ μ

ν
νμμν  

 . (2) 

 

where νμ xx , are the contravariant vector 

components,  xρ   material density function. 

Assuming a planet of mass m orbiting in a circular 
orbit of radius r around a star of mass where M >> m, 
we can write the time rate of change of the energy 
radiated by this system is given (Peters and Mathews, 
1963) by:  
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The goal of this contribution is to derive the secular, 
long periodic, and short periodic effects caused on to 
semimajor axis by emission of gravitational waves of 
a two-body system, and examine if such effects are 
detectable by today’s technology. For that, we start 
with the expression of the total energy of the system. 
Next, we find an expression of the time rate of the 
total energy of the system we substitute for the 
known expression from Eq. (3). Finally, we obtain 
and expression for the rate of the semimajor axis, in 
which the inverse radial powers of the radial distance 
are, expressed as function of the orbital elements with 
the help of the eccentricity functions, and 
trigonometric arguments of different indices that 
result from its spherical harmonic expansion. 
 
II. THE SEMIMAJOR AXIS EFFECT 
 
Starting with the total energy per unit mass of such a 
system we write: 
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taking the time derivative of Eq. (4) we obtain: 
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assuming M >> m using Eq. (3) in Eq. (5) and 
solving for a  we have: 
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Next the term 1/1 r , where  is integer (see below), 
can be written as a function of the eccentricity 

functions )(eG pq and the orbital elements of 

secondary body in the apparent right ascension 
system as follows [Kaula, 2000; p.35]: 
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where f is the true anomaly,  is the Greenwich 
sidereal time,  is the degree and m is the order of the 
spherical harmonic expansion of the potential, (p, q) 
Z and  p0 . The indices mqp ,,, identify the 

eccentricity function and the trigonometric argument 
associated with a particular spherical harmonic term 
of degree   and order m. These terms arise from the 
potential of the primary when it is expressed in terms 
of spherical harmonics as given in Kaula (cf. Eq. 
(1.31); Kaula, 2000). Therefore, for a non-circular 
orbit 2 , for 1/a3 which can be written as follows: 
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and therefore Eq. (8) becomes 
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III. THE SECULAR SEMIMAJOR AXIS 
EFFECT 
 
Next, we examine only the secular terms resulting 
from the RHS of Eq (6). We can do this by 
eliminating the low frequency term � from Eqs. (7) 
by setting p2 = 0 . Similarly, from Eq. (9) and, 

we eliminate the terms that are varying with high 
frequency, i.e., the terms that are functions of the 
mean anomaly M, and )( ΘΩ  . This can be 

achieved by setting their respective coefficients to 
zero, which results in 0)2(  qp , and m = 0, 

which imply q = 0 since p2 . To proceed with 

the calculation of the secular time rates of change of 
the orbital elements due to Eq. (6), we need to 

calculate of eccentricity function )(eG pq is not a 

trivial process because it requires the use of the so 

called Hansen coefficients mn

kX
, . Following 

Giacaglia, (1976) we have that: 
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and therefore 
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These conditions must hold simultaneously and 
finally, Eqs. (6) takes the form: 
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which finally becomes: 
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which in the case of a circular orbit e = 0 simplifies 
to: 
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which also results from Eq. (6) when r = a. 
 
IV. THE LOW FREQUENCY SEMIMAJOR 
AXIS EFFECT 
 
Focusing on the low frequency terms of Eq. (6), we 
eliminate the terms from Eq. (9) that vary with high 
frequency. This can be achieved by setting their 
respective coefficients to zero resulting to 

02  qp and m = 0. For the 3/1 a term in (8) 

we have that 2 and  p0  and  pq 2 , 

which implies that  2   ,2q  therefore, using 

Eq. (9) Eq. (6) and summing over p becomes: 
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Carrying out the summation in the above equations, we obtain: 
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 ,  (16)where the eccentricity functions 
in Eq. (16) have the following values 
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and therefore the final equation for the low frequency 
effects becomes: 
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where for circular orbit e = 0 Eq. (19) becomes 
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V. HIGH-FREQUENCY SEMIMAJOR AXIS EFFECT 
 
In order to obtain the high frequency components of Eq. (6), we simply eliminate the secular and low-frequency 
terms in (9) and we obtain: 
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We proceed with the derivation of the high frequency effects by summing over index q ≤ 4. When q > 4 there is 
no contribution because the resulting terms are equal to zero since they are multiplied with eccentricity 
functions that they are equal to zero. Therefore the semimajor axis time rate of change due to high frequency 
terms, as resulting from the emission of gravitational radiation becomes, written in orders of eccentricity up to 
O(e4) included: 
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Substituting for the eccentricity functions and simplifying we obtain the following equation: 
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where again 
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is the original enhancement eccentricity factor that appears in Eq. (3) 
 
VI. ORBITAL DECAY TIMES 
 
We can now calculate the orbital decay time due to secular/maximum low frequency effects using Eq. (19). 
Integrating this equation and between ai and af we obtain, and imposing that af = 0 we obtain that  
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The same equation also holds for the in phase long frequency effects. Similarly, using Eq. (23) for the high 
frequency effects we obtain the maximum decaying time corresponding to in phase effects to be: 
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VII. NUMERICAL RESULTS 
 
For our numerical calculations, we choose Mercury 
orbiting around the Sun. Mercury has the following 
orbital parameters e = 0.205631752, a = 57909083 
km. m = 3.30221023 kg, and the mass of the sun is 
M = 1.991030 kg (Vallado, 2007). Also the argument 
of the perihelion  = 77.45645 (Murray and 
Dermott, 1999).  
First, we proceed with the calculation of the secular 
effect on the semimajor axis in meters per Earth 
years. Substituting in Eq. (13) we obtain that: 

 1310652.4 
dt

da m/y,     

     (25) 
where in the case of a circular orbit having identical 
orbital parameters to those of Mercury we obtain -
3.32010-14 m/a. For the shake of an “extreme” 
secular semimajor axis change calculation due to 
gravitational radiation assume a secondary body that 
orbits a massive black hole (SBH) of the following 
parameters: mass M = (3.950.06) Msolar, semimajor 
axis a = 0.5 mpc, eccentricity e = 0.5, 0.9 
respectively, and a period of approximately 15y, 
(Merrit et al., 2009). Using these values, we obtain 
numerical results that we tabulate in Table 1 below: 

 
Table1 Secular time rate of change of the semimajor axis due to gravitational radiation when the secondary orbits around a super 

massive black hole. 

Mass of the secondary 
m [kg] 

Eccentricity 
e 

Time rate of change 
of semimajor axis 

 
1

/ eedtda 
 

[m/a] 

Time rate of change 
of semimajor axis 

 
2

/ eedtda 
 

[m/a] 

3.30221023 0.5 and 0.9 -9.80010-7 -0.00411 
5.97421024 0.5 and 0.9 -1.75110-5 -0.07345
1.89881027 0.5 and 0.9 -0.00563 -23.6384
3.30221023 0.999  -3.792107 
5.97421024 0.999  -6.77510 8 
1.89881027 0.999  -2.18010 11 

Table2 Maximum long frequency time rate of change of the semimajor axis due to gravitational radiation when the secondary orbits 
around a super massive black hole 

Mass of the secondary 
m [kg] 

Eccentricitye 
Max semimajor axis effect 

[m] 

Max semimajor axis 
effect 
[m] 

3.30221023 0.5 and 0.9 -3.80710-13 -1.65810-8 
5.97421024 0.5 and 0.9 -6.80210-12 -2.96310-7 
1.89881027 0.5 and 0.9 -2.18910-9 -9.53410-5 
3.30221023 0.999  -215.719 
5.97421024 0.999  -3854.22 

1.89881027 0.999  -1240106 
 
Next, we continue with the low frequency effect on the semimajor axis. Using Eq. (20) we obtain the maximum 
possible effect for Mercury to be to be -4.49810-20 m. This effect is extremely small to be measured by today’s 
Earth based technology. In the case of the SBH we tabulate the results in Table 2 below. Finally, for the 
numerical calculation of the high frequency effects of Eq (21) on the orbital time rate of change of the 
semimajor axis we choose to calculate only the maximum effect because Eq (22) contain many sine waves of 
various frequencies. We achieve this achieved by setting all trigonometric terms equal to unity, implying that all 
constituent waves are in phase. Substituting the numerical values given above in Eq. (23) we obtain the 
maximum (in phase) effect of the semimajor axis to be -8.74010-20. m. This effect is again extremely small to 
be measured by today’s Earth based technology In the case of the SBH we tabulate the results in Table 3 below.  

Table 3 Maximum high frequency time rate of change of the semimajor axis due to gravitational radiation when the secondary 
orbits around a super massive black hole 

Mass of the secondary 
m [kg] 

Eccentricities of 
the secondary 

e 

Max change 
of semimajor axis 

[m] 

Max change of semimajor 
axis 
[m] 

3.30221023 0.5 and 0.9 -3.99310-13 -8.98910-10 
5.97421024 0.5 and 0.9 -7.13510-12 -1.60610-8 
1.89881027 0.5 and 0.9 -2.29610-9 -5.16810-6
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The higher the mass and the eccentricity of the 
primary the faster the semimajor axis will decay, and 
the faster it will crush into the SBH. A high eccentric 
orbit will bring the periastron closer to the SBH. For 
a small, the effect will have a greater effect at the 
vicinity of the periastron. In particular the 
enhancement factors f(e)(1-e2)-7/2 and f(e) (1-e2)-5are 
very sensitive to the changes of eccentricity. For 
example from the first one we obtain that f(0.5) = 
4.88, f(0.6) = 10…. f(0.9) = 1243, f(0.99) = 3.9106, 
f(0.999) = 1.2371010, and from the second one f(0.5) 

= 7.520, f(0.6) = 19.97…. f(0.9) = 15010, f(0.99) = 
1.394109, f(0.999) = 1.3841014 respectively. 
Therefore, the highly eccentric orbits will suffer a 
great semimajor axis loss due also to the 
enhancement factor. In the case where e = 0.999, the 
secular effects reduce the orbit drastically in 
relatively small time, as given in Table (4).  
 
In particular, the mass of Jupiter body will completes 
approximately 1.2 revolutions around the SBH before 
it crushes on to it. 

 
Table 4 Orbital decaying times at different eccentricities 

Mass of the 
secondary 

m [kg] 

Eccentricities of 
the secondary 

e 

Decaying time 
(secular effect) 

[y] 

Max decaying time 
(low frequency effect) 

[y] 

Max decaying time 
(high frequency effect) 

[y] 
3.30221023 0.5 1.8721018 1.8721018 2.8831018 
5.97421024 0.5 1.0481017 1.0481017 1.6141017 
1.89881027 0.5 3.2561014 3.2561014 5.0141014 
3.30221023 0.9 9.3821014 9.3821014 1.1331016 
5.97421024 0.9 5.2511013 5.2511013 6.3401014 
1.89881027 0.9 1.6311011 1.6311011 1.9701012 
3.30221023 0.999 101714 101714 1.138109 
5.97421024 0.999 5692.89 5692.89 6.369107 
1.89881027 0.999 17.6891 17.6891 197918 

 

 
Fig 1 Secular semimajor axis time rate of Mercury caused by 

emission of gravitational radiation. Red line indicates a 
circular orbit and blue line an elliptical one. 

 
Fig 2 Enhancement factor f(e) versus eccentricity e. The red 

graph corresponds to secular effects and blue to high frequency 
effects, 

 
From Fig. 2 above we observe that the enhancement 
functions for secular and high frequency effects are 

identical for values of eccentricities of approximately 
e = 0.4. For values higher than 0.4 the secular 
enhancement function drastically increases at around 
e = 0.65 where the corresponding high frequency one, 
increases at approximately e = 0.75. Therefore, 
secular effect are enhanced at lower eccentricity 
values comparing to the high frequency ones that are 
enhanced at slightly higher eccentricities, with an 
eccentricity difference of about 0.1. 
 
CONCLUSIONS 
 
We use the equation that gives the time rate of the 
orbital semimajor axis due to the emission of 
gravitational waves, in order to calculate secular, low, 
and high frequency effects of the semimajor axis 
decay. In addition, we used Kaula’s approach to 
transform the inverse of the semimajor axis, in 
spherical harmonics, in order to consider the different 
cases mention in the above paragraph. We fist 
estimated the secular, low and high frequency effects 
on Mercury using Mercury and the Sun, and we 
found that the effects are very small to be measured 
with today’s Earth based technology. The secular, 
low, and high frequency effects, on the time rate of 
change of the semimajor axis for three planetary 
bodies of different mass and high eccentricities 
orbiting a super massive black hole (SBH), were also 
calculated. From all effects, the secular time rate of 
change of the semimajor axis of the secondary of 
higher mass and eccentricity is the most significant 
for the orbital evolution of such a system. Even 
though all these effects are huge by Earth orbiting 
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satellite standards, there may be small if such a 
system containing the SBH is observed from the 
Earth. In order to observe these effects we will 
probably have to resort in future space-orbiting 
technologies. Future technologies of this kind might 
prove suitable for detecting gravitational radiation of 
effects. 
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