
Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

1

NOVEL MANTISSA SIMILARITY INVESTIGATOR FOR PATH-
DELAY REDUCTION OF PRODUCT MANTISSA CALCULATION

MARCUS LLOYDE GEORGE

Dept. Electrical and Computer Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago

E-mail: marcus.george99@yahoo.com

Abstract - Floating point multiplication is a very important component of many engineering applications such as signal
processing, video processing and image processing. In floating point multiplication, the mantissa calculation operation caters for
the majority of time for the process. Because of this it is important to consider the speed up of the mantissa multiplication
process in order to speed up systems that utilize floating point multiplication. This paper presents the development of a novel
Mantissa Similarity Investigator (MSI) which can be interfaced to any product mantissa calculator to reduce the path delay of
the multiplication operation. The system was synthesized for a variety of FPGA targets using Xilinx ISE Design Suite 14.7
Commercial Edition. The Mantissa Similarity Investigator (MSI) was interfaced to a Mantissa Calculator developed for this
project, to form a complete novel MSI-Interfaced Mantissa Calculator. The path delay of this system was compared with
existing implementations of 24-bit, 53-bit, 113-bit and 237-bit binary multipliers which represent mantissa multiplication at
various precision levels. The novel MSI-Interfaced Mantissa Calculator achieved shorter path delay than its existing
counterpaths reviewed.

Keywords - Arithmetic Logic Unit; Arithmetic Circuits; Binary Multiplier; Floating-Point Multiplier; Arithmetic Logic;
FPGAs in Arithmetic.

I. INTRODUCTION

Arithmetic Logic Units (ALUs) are very important
components of processors that perform various
arithmetic operations such as multiplication, division,
addition, subtraction, cubing, squaring, etc. Off all
operations the operation of multiplication is most
elementary and most frequently used in ALUs. The
operation of multiplication also forms the basis of
many other complex arithmetic operations such as
cubing, squaring, convolution, etc.

According to [3] multiplication is the most
elementary and most frequently used operation in
ALUs. It allows one number to be scaled by another
number. Floating-point multiplication is the
arithmetic operation most frequently utilized and is a
very important component of many engineering
applications such as signal processing, video
processing, image processing, etc. [12].

Floating-point format can represent very small and
large numbers when compared to fixed-point
numbers, therefore the dynamic range of numbers
that can be represented is greater [3]. Many processes
in science utilize floating-point arithmetic and
therefore there is a need to develop units with shorter
path delay, smaller hardware utilization and less
power consumption [3]. Multiplication consumes
significant delay compared to other arithmetic units
used in basic mathematical computations [14]. As a
result it is beneficial in the area of mathematical
computation to present faster and more efficient
mechanisms for implementing mathematical
operations which also can utilize less power.

II. LITERATURE REVIEW

[2] presented a study of five (5) high speed binary
multipliers: Booth Multiplier, Modified Booth
Multiplier, Vedic Multiplier, Wallace Multiplier and
Dadda Multiplier.According to [2] the Modified
Booth multiplier reduces the number of partial
products generated compared to other multipliers
while the Dadda multiplier minimizes the number of
adders used when compared to the Wallace
multiplier. [2] therefore proposed a new multiplier
architecture called the Booth Dadda Algorithm which
combined the benefits of the Modified Booth
Multiplier and Dadda Multiplier. As such [2]
indicated that this proposed architecture will reduce
the hardware utilization because of the reduction of
the number of adders used, and also increased its
speed because of the reduction in the number of
partial products formed.
[4] presented an efficient method for partial product
reduction for binary multiplier. This system was
designed for the 16nm TSMH CMOS technology and
was done using the Tanner EDA 14.1 development
tool. [4] also presented a study of several partial
product techniques such as Wallace and Dadda
schemes. According to [4] the Dadda multiplier
performed less reductions than the Wallace
multiplier. [4] also claims that the Dadda multiplier
consumed less power and area than the Wallace
multiplier. [4] also presented several compressors, eg.
4 to 2 compressor which introduced a horizontal path
as a result of limited propagation of the carry of the
multiplier unit. [4] produced a gate level redesign of
this compressor for maximizing performance. Two
operating modes were considered: active mode and
sleep mode. [4] examined 3 to 2, 4 to 2, 5 to 2 and 7
to 2 compressors and their performance. According to

Novel Mantissa Similarity Investigator for Path-Delay Reduction of Product Mantissa Calculation

Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

2

[4] the compressors with sleep transistors consumed
on average 47.35% less power than the same
architecture of compressor without sleep transistors.
[4] also claims that the compressors with sleep
transistors have less delay than the same architecture
containing compressors without sleep transistors.
[5] proposed an 8x8 hybrid tree multiplier system by
combination of the Dadda and Wallace strategies.
The system was implemented on the DSCH2 tool and
simulated on MICROWIND with 0.25um technology.
[5] indicated that the conventional 8x8 Dadda
multiplier executes more addition operations and
therefore overheads due to wiring are greater. The
decomposition logic type Dadda multiplier has partial
products which are divided into four (4) parts and
partial product addition (PPA) reduction is performed
on each part and these results in the reduction of the
path delay [5]. The proposed approach includes the
assignment of the name group1, group2, group3 and
group4 to the four decomposition blocks and each
group is assigned either a 4x4 Dadda or 4x4 Wallace
algorithms to be used for compressing the partial
products. The preliminary results of the [5] indicate a
40% reduction in power (via analysis of Power Delay
Product PDP) was achieved for the proposed system
over existing 8x8 Dadda, Wallace, Decomposed
Dadda and Partitioned-type multiplier without
compressors.
[6] presented a high speed multiplier system which
was based on Vedic mathematics. [6] also does a
comparison of the implemented multiplier with the
conventional binary multiplier in 8-bit, 16-bit and 32-
bit modes. The multipliers were designed and
implemented using VHDL for the target device
Spartan 3 XC3S50a-4tq144 using Xilinx 14.7 ISE.
[6] indicated that the both the Urdhava and Nikhilam
Sutra algorithms showed significant improvements in
delay over the conventional binary multiplier at 8, 16
and 32-bit modes.
[8] presented the implementation of a new and
efficient reduction scheme for implementation of tree
multipliers on FPGAs. The system implemented was
not a binary multiplier system but rather a reduction
scheme for partial product reduction. [8] proposed
using a library of m:n counters of varying sizes in
order to maximize the partial product reduction
operation of the system, hence reducing the number
of reduction steps hence minimizing latency and
hardware utilization of the multiplier. The 32-bit
multiplier scheme was implemented in Verilog on
Xilinx ISE suite and targeted the Xilinx Spartan-6
platform.
[9] presented the implementation of a low power,
high speed 16-bit binary multiplier using Vedic
mathematics. The design started with the construction
of a 2x2 multiplier block which is used in the
construction of a 4x4 multiplier block, after which a
8x8 multiplier block is constructed. The required
16x16 multiplier block was constructed using the 8x8
multiplier blocks.

 [10] presented the implementation of a high speed,
area efficient 16-bit Vedic Multiplier and 32-bit
Booth Recoded Wallace Tree multiplier for use in
implementation of arithmetic circuits. The system
was implemented in Verilog HDL and synthesized
for Xilinx Virtex 6 FPGA device. [10] reported that
the multiplier systems implemented had path delays
of 13.45ns and 11.57ns respectively. The hardware
utilization was not stated.[11] presented the design of
a 24-bit binary multiplier for use in the
implementation of a 32-bit floating point multiplier.
Vedic Mathematics was utilized in the
implementation.
[12] proposed an efficient strategy for unsigned
binary multiplication which was expected to improve
the implementation in terms of path delay and area.
[12] utilized a combination of Karatsuba algorithm
and Urdhva-Tiryagbhyam algorithm in implementing
the required system. The Karatsuba algorithm was
implemented such that the two inputs were multiplied
using vertical and crosswise multiplication method,
the partial products are generated and summed up.
The Urdhva-Tiryagbhyam algorithm on the other
hand is best suited for multiplication of large numbers
and the strategy is a divide and conquer one in which
the numbers are divided into their most significant
and least significant half after which multiplication is
performed. The system of[12] was implemented
using Verilog HDL using a target Spartan-3E and
Virtex-4 FPGA. 8-bit, 16-bit, 24-bit and 32-bit
versions of the multiplier were implemented. The
delay of each was obtained and compared with
existing systems of same bit sizes. [12] indicated that
the proposed 8-bit, 16-bit and 24-bit versions
outperform their counterparts when it came to path
delay while the 32-bit did not perform better than its
32-bit counterparts.
[13] designed an area-efficient multiplier using
modified carry select adders (CSLAs) based on
crosswise and vertical Vedic multiplier algorithms.
The conventional BEC-based CSLAs utilized one
ripple carry adder (RCA) and one binary to excess
one converter (BEC) instead of dual ripple carry
adders (RCAs) in its implementation. The modified
CSLA consisted of three stages – half sum
generation, final sum generation and carry generation
[13]. [13] claimed that the 8-bit modified CSLA has
shorter latency than the conventional 8-bit Vedic
multiplier. This modified CSLA was then used in
implementation of proposed 8-bit Vedic Multiplier.
[13] reported that the path delay of the proposed
Vedic Multiplier was 45.68ns while the hardware
utilization was 1380 gates.
[14] presented the design of a high speed 32-bit
multiplier architecture based on Vedic mathematics.
[14] implemented this system by adjustment of the
partial products using concatenation approach. The
partial products are also added using carry-save
adders instead of two adders at each stage of partial
product reduction. The system of [14] was

Novel Mantissa Similarity Investigator for Path-Delay Reduction of Product Mantissa Calculation

Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

3

implemented on the Xilinx Spartan-3E device
XC3S500e-fg320-5. [14] reported that the 8-bit, 16-
bit and 32-bit Vedic multiplier implementations had
path delays of 13.43ns, 17.62ns and 22.47ns
respectively.

III. CONTRIBUTION OF THE RESEARCH

Most of the multiplier systems reviewed in this paper
carried out the processes of partial product
generation, partial product storage and partial product
reduction. For example, multipliers developed in [2],
[3] and [4] perform partial product reduction using
Wallace or Dadda multipliers, thereafter the results
are compressed using compressors. Others like [5]
use a combination of multiplier and compressor
techniques to perform the partial product reduction
segment. Most of the existing systems reviewed
utilized Vedic mathematics for partial product
generation. Multiplier systems in [14], [13] and [16]
for instance developed Vedic multipliers by utilizing
smaller multipliers as building blocks to developing
bigger multipliers. For instance,the construction of a
2x2 multiplier block which is used in the construction
of a 4x4 multiplier block, after which an 8x8
multiplier block is constructed. Some multiplier
systems such as that in [10] concurrently added the
partial products during the multiplication operation,
hence reducing the delay at the expense of hardware
utilization. Others like [17] added the partial products
as they were generated to reduce demands for
memory for storage of partial products. Others like
[19] proposed a technique for low power operation
which utilized both Sleep and BIVOS techniques.
When starting from the columns of least significance,
some columns are switched to sleeping mode while
the remaining is supplied with a biased voltage. This
method resulted in a loss in accuracy. None of the

existing binary multiplication systems analyzed past
multiplication operations to further reduce path delay
of the multiplication operation. Focusing on previous
multiplication operations could benefit future
multiplications, hence preventing the system from
having to undergo lengthy partial product generation
operations especially in the case of quadruple and
octuple precision modes where the number of partial
products can become very large. The path delay of
existing binary multipliers are long and should be
reduced to ensure that the systems they are utilized in
have shorter path delays themselves.

The contribution of this paper will be the
development of a novel Mantissa Similarity
Investigator (MSI) which can be connected as the
front end to any existing Product Mantissa Calculator
for any floating point multiplier system to the reduce
the path delay of the mantissa multiplication process.
The MSI unit will result in the mantissa calculator
having shorter path delay than all existing
implementations of binary multipliers. This
contribution will likely be extremely useful to
arithmetic operations in digital and computer systems
presently and in the future.

IV. DESIGN OF NOVEL MANTISSA
SIMILARITY INVESTIGATOR

The Mantissa Similarity Investigator (MSI) (Fig. 1.)
consisted of eight (8) inputs and three (3) outputs.
The input clk is the periodic clock waveform to the
system. When reset is asserted HIGH the entire
system is initialized and the default state is enforced.
precision_mode is used for selection of the floating-
point precision mode (single, double, quadruple,
octuple).

Fig. 1. FSM-D Interface Definition for Mantissa Similarity Investigator (MSI)

Before any similarity check (check_similarity)
process is conducted, all inputs are analyzed to ensure
that there are no redundancies. This provides several
benefits to the system all of which reduce
unnecessary interaction with the memory storage
element of the MSI unit (Self-Ordering RAM block),

hence possibly reducing the path delay. The first
benefit stems from avoiding the system performing
duplicate searches. For instance, if the requirement is
to perform eight (8) single precision floating point
multiplication operations and say two of the batches
have the same inputs A (multiplicand) with B
(multiplier), then the system performs only one

Novel Mantissa Similarity Investigator for Path-Delay Reduction of Product Mantissa Calculation

Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

4

similarity check and uses the result for both input
batches. If all eight (8) input batches are identical,
then only one similarity check will be done. This is
expected to reduce the path delay. The second benefit
stems from avoiding storage of duplicates. The
instance the system discovers the occurrence of
duplicate batches of inputs A (multiplicand) with B
(multiplier), it makes a record of it in the form of a
“input_similarity_code” which utilizes digits 0-7 to
indicate how similar inputs are to each other. When
adding new products, the system refers to this code to
determine which new products should be added to the
Self-Ordering RAM block. When check_similarity is
asserted HIGH and add_new_products is asserted
LOW the system utilizes inputs A (multiplicand) with
B (multiplier) to determine if such inputs were
multiplied in the past by conducting a search of the
Self-Ordering RAM block. Before performing a
search, the system checks for redundancies in the
input A (multiplicand) with B (multiplier) batches to
avoid unnecessarily searching the Self-Ordering
RAM block. This process results in the production of
an 8-bit “input_similar_code”. Once this is done the
similarity check process can proceed. If a match is
found then the product corresponding to those inputs
is assigned as a batch of the 474-bit similar_products
output, and a logic 1 is assigned to the corresponding
bit of the 8-bit similarity_code which generally
indicates which of the batches (or segments) of
similar_products holds a product computed in the
past. When all batches of inputs are processed, the
done signal will be asserted HIGH to indicate the end
of the process in both cases (checking similarity and
adding new products). When check_similarity is
asserted LOW add_new_products is asserted HIGH
the system adds the new products generated by the
novel MSI-prepared binary multiplier system (found
on the 474-bit port new_products) to the memory
storage element of the MSI unit (Self-Ordering RAM
block) for future similarity checks. Before adding
new products, the system checks the

“input_similarity_code” created prior to the similarity
check process. Depending on this the system will
know which of the products is expected to be a
redundancy and which should not be added to the
Self-Ordering RAM block. Once this is done then the
system can proceed with the addition of new
products.
 To minimize the time taken for future similarity
checks two considerations were taken into account in
the design of the RAM block. First the RAMblock
was divided into sectors. Each sector represents a
portion of the range of numbers that can be
represented at the selected precision level. Hence,
prior to adding data, the MSI unit determines which
of the sectors of the RAMblock the data must be
added to. Therefore, when a similarity check for a
particular input pair of A (multiplicand) with B
(multiplier), the search is conducted on only that
sector of the RAMblock. The second design
consideration was that the RAMblock is made a Self-
Ordering RAMblock, meaning as data is added to its
sectors, all data in the sector will be arranged in
ascending order. As such when a similarity check is
done the search can begin within the vicinity of
numbers in which the inputs A (multiplicand) with B
(multiplier) are likely to be found. The datapath
design of the mantissa similarity investigator
comprised of sixteen (16) blocks. A data organizer
(Block 1D) organizes inputs A (multiplicand) with B
(multiplier) such that batches of multiplicand and
multiplicands can be easily used for similarity checks
or for adding new products. A Mantissa Calculator
was developed for the purpose of validation of the
effect of MSI on mantissa calculation. The Mantissa
Calculator was then combined with the Mantissa
Similarity Investigator (MSI) to form the complete
modified novel MSI-Interfaced Mantissa Calculator
which was expected to result in significant reduction
in path delay in all precision modes. The datapath
design (Fig. 2.) of the novel MSI-Interfaced Mantissa
Calculator.

Fig. 2. Datapath Design for the Novel MSI-Interfaced Multi-Precision Binary Multiplier Architecture

Novel Mantissa Similarity Investigator for Path-Delay Reduction of Product Mantissa Calculation

Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

5

V. HARDWARE IMPLEMENTATION OF THE
OF NOVEL MANTISSA SIMILARITY
INVESTIGATOR

The hardware implementation of the novel MSI-
interfaced mantissa calculator was implemented using
VHDL in the Xilinx ISE Design Suite 14.7. The
system consisted of several sub-modules and as such
a structural approach was used in the implementation
of the system. Sub-modules were port-mapped
together to implement the datapath using knowledge
gained in [23] and [24]. After implementation they
were synthesized in the Xilinx ISE Design Suite 14.7
in preparation for verification and validation stages.

VI. VERIFICATION OF NOVEL MANTISSA
SIMILARITY INVESTIGATOR

The novel MSI-Interfaced Mantissa Calculator in
single, double, quadruple and octuple precision
modes was verified using a wide range of input
multiplicand and multiplier values. Timing simulation
was performed on all components of the multiplier
system to determine if they were operating as
expected. Simulation was done using ISim simulator
on Xilinx ISE Design Suite 14.7. The system was
implemented for all four (4) precision modes to verify
that it correctly multiplied multiplicand and
multipliers for a range of values at all four precision
modes.

Fig. 3. ISim Simulation for Novel MSI-Interfaced Mantissa Calculator

The actual outputs of the multiplier at all four
precision modes were compared to the expected
outputs to verify that they correctly multiplied the
inputs. The comparison confirmed that all indicated
that the multiplier’s actual outputs for all four
precision modes corresponded to their expected
results.

VII. VALIDATION OF NOVEL MANTISSA
SIMILARITY INVESTIGATOR

The path delay of the MSI-Interfaced Mantissa
Calculator for several FPGA targets (Table I) was
determined via Post Place and Route Static Timing
Report. Xilinx ISE Design Suite 10.1 was utilized for
obtaining the post place and route static timing report
for the Virtex 2 FPGA target because that target was
not supported by Xilinx ISE Design Suite 14.7. Table
II presents the maximum path delay of the novel
MSI-Interfaced Mantissa Calculator with and without
MSI used.

TABLE I: FPGA PLATFORMS USED IN VALIDATION TESTING
FPGA Platform Nomenclature
Spartan 3 XC3S1000-4FG256

Spartan 3A XC350A-4TQ144
Spartan 3E XC3S100E-5TQ144
Spartan 6 XC6SLX4-3TQG144
Virtex 2 XC2V1000-5FG456C
Virtex 4 XC4VFX12-10FF668
Virtex 5 XC5VFX30T-2FF665
Virtex 6 XC6VLX75T-3FF484

TABLE II: MAXIMUM PATH DELAY OF NOVEL MSI-
INTERFACED MANTISSA CALCULATOR ARCHITECTURE WITH

AND WITHOUT MSI

Precision
Mode Platform

Maximum
Path Delay /

ns
No

MSI MSI

Single
(8

batches)

Spartan 3 8.163 4.841
Spartan 3A 7.087 2.498
Spartan 3E 6.898 2.672
Spartan 6 4.806 2.385
Virtex 2 3.631 2.136
Virtex 4 3.515 2.108
Virtex 5 4.622 1.896
Virtex 6 2.816 1.347

Double
(4

batches)

Spartan 3 8.484 3.476
Spartan 6 4.984 2.180
Virtex 2 4.712 1.689
Virtex 4 4.629 1.610
Virtex 5 4.079 1.674
Virtex 6 3.374 1.377

Quadruple
(2

batches)

Spartan 3 9.274 5.132
Spartan 6 5.546 2.435
Virtex 2 4.681 2.114
Virtex 4 4.856 1.817
Virtex 5 5.189 1.637
Virtex 6 3.153 1.547

Octuple
(1 batch)

Spartan 3 10.612 6.534
Spartan 6 5.608 2.428
Virtex 2 5.488 2.818

Novel Mantissa Similarity Investigator for Path-Delay Reduction of Product Mantissa Calculation

Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

6

Virtex 4 5.441 3.323
Virtex 5 6.566 1.576
Virtex 6 4.269 2.021

When the developed mantissa calculator is equipped
with MSI, the system is arranged such that if it
determines that present inputs were used in binary
multiplication operations in the past (referred to as
‘similar inputs’), the system would avoid performing
the multiplication operation completely and just
utilize the previously computed product as the result,
hence reducing the path delay. The more input
batches that are determined to be similar inputs, the
shorter the path delay is expected to get.

To analyze the system performance in this case, the
worst case and best case scenarios must have been
considered. Once the MSI-interfaced mantissa
calculator detects no similar inputs in the input
batches, the system would not benefit from MSI at
that instant, but is likely to benefit from MSI in the
future if such inputs were determined to be similar for
subsequent multiplication operations. The longest
path delay for this system will correspond to the
scenarios where all bits of input batches are non-zero.
As such the inputs to the novel architecture were
arranged such that all multiplicand and multiplier bits
for all batches were non-zero. This was applied to all
precision modes.

It must be noted that only a few authors of
documentation for existing 8-bit, 16-bit and 24-bit
binary multiplier systems explicitly stated that the
figures stated for delays of their multiplier systems
was actually maximum path delays obtained after
post place and route static timing analysis (consisting
of logic delays, routing delays and clock skew), and
not path delay obtained from the synthesis report (less
accurate). Many of them indicated that their path
delays were obtained after synthesis and as a result
the delays stated may not include routing delays and
clock skew. The delays stated for the novel MSI-
interfaced mantissa calculator implemented in this
paper are maximum path delays after post place and
route static timing analysis. In this paper it was
assumed that the authors of documentation for
existing implementations of 8-bit, 16-bit and 24-bit
binary multiplier systems provided maximum path
delay after post place and route static timing analysis.
The novel MSI-interfaced multi-precision binary
multiplier implemented in this paper still had shorter
delays than these existing multiplier systems.
However, if the delays stated by authors of existing
multiplier systems were indeed excluding routing
delays and clock skew, it would mean that the novel
MSI-interfaced mantissa calculator implemented in
this paper performed much better than its existing
counterparts.

TABLE III: PERFORMANCE COMPARISON BETWEEN NOVEL 24-
BIT BINARY MULTIPLIER ARCHITECTURE AND VARIOUS 8-BIT

BINARY MULTIPLIERS REVIEWED
Source Multiplier Pat

h
Del
ay /
ns

This Paper Novel MSI-Interfaced
Mantissa Calculator (Single
Precision mode)

See
Tab
le
II

[5] –
DSCH2 tool

Regular Dadda Multiplier 4.4
0

Decomposed Dadda
Multiplier

4.1
0

Partitioned Dadda Multiplier 5.5
0

Wallace Tree Multiplier based
on 3:2, 4:2 & 5:2 compressor

9.4
0

Dadda Multiplier based on
Higher Order Compressors

6.4
0

Proposed Hybrid Multiplier
Combination
(Dadda/Wallace/Wallace/Dad
da)

7.5
0

[6] –
Spartan 3
XC350A-
4TQ144

Conventional Multiplier 11.
00

Urdhava Vedic Multiplier 5.5
0

Nikhilam Sutra Vedic
Multiplier

6.2
5

[12] –
Virtex 4
(XC4VFX1
2-10FF668)

Vedic Multiplier 9.4
0

[13] –
Spartan 3
(XC3S1000-
4FG256)

Vedic Multiplier 45.
68

[14] –
Spartan 3E
(XC3S100E
-5TQ144)

Vedic Multiplier 13.
43

[15] –
Spartan 3
(XC3S500-
5FG320)

Vedic Multiplier 23.
18

TABLE IV: PERFORMANCE COMPARISON BETWEEN NOVEL 24-
BIT BINARY MULTIPLIER ARCHITECTURE AND VARIOUS 16-BIT

BINARY MULTIPLIERS REVIEWED
Source Multiplier Path

Delay /
ns

This Paper Novel MSI-Interfaced
Mantissa Calculator
(Single Precision
mode)

See
Tables

II & III

[9] Vedic Multiplier 27.15
[10] – Virtex 6 Vedic Multiplier 13.45

Novel Mantissa Similarity Investigator for Path-Delay Reduction of Product Mantissa Calculation

Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

7

(XC6VLX75T-
3FF484)
[6] – Spartan 3
(XC3S1000-
4FG256)

Conventional
Multiplier

11.00

Urdhava Vedic
Multiplier

6.00

Nikhilam Sutra Vedic
Multiplier

6.00

[12] – Virtex 4
(XC4VFX12-
10FF668)

Vedic Multiplier 11.51

[14] – Spartan
3E
(XC3S100E-
5TQ144)

Vedic Multiplier 17.62

[15] – Spartan
3 (XC3S500-
5FG320)

Vedic Multiplier 38.82

TABLE V: PERFORMANCE COMPARISON BETWEEN NOVEL 24-
BIT BINARY MULTIPLIER ARCHITECTURE AND VARIOUS 24-BIT

BINARY MULTIPLIERS REVIEWED
Source Multiplier Path

Delay
/ ns

This Paper Novel MSI-Interfaced
Mantissa Calculator
(Single Precision mode)

See
Table

II
[11] Vedic Multiplier 16.32
[12] – Virtex
4
(XC4VFX12-
10FF668)

Vedic Multiplier 13.00

CONCLUSION

This paper presented the implementation, verification
and validation of a novel Mantissa Similarity
Investigator (MSI) capable of being attached to any
product mantissa calculator to result in reduction in
path delay of the mantissa multiplication process.
Finally, the system developed without the use of MSI
performs has shorter path delay than existing systems.
However, the development of the MSI unit and the
incorporation of it in the a novel MSI-interfaced
mantissa calculator resulted in a system that has path
delay that is significantly shorter than that of existing
binary multiplier systems.MSI can be applied to other
arithmetic units such as floating point dividers and
square units to further reduce the path delays of their
operations.

REFERENCES

[1] Sunesh, N.V and P Sathishkumar. 2015. Design and

implementation of fast floating point multiplier unit. 2015
International Conference on VLSI Systems, Architecture,
Technology and Applications (VLSI-SATA). pp 1 - 5, DOI:
10.1109/VLSI-SATA.2015.7050478

[2] Abraham, Sumod, Sukhmeet Kaur and Shivani Singh. 2015.
Study of Various High Speed Multipliers. 2015 International

Conference on Computer Communication and Informatics
(ICCCI). pp 1 - 5, DOI: 10.1109/ICCCI.2015.7218139

[3] Kodali, Ravi Kishore, Lakshmi Boppana, Sai Sourabh
Yenamachintala. 2015. FPGA implementation of vedic
floating point multiplier. 2015 IEEE International Conference
on Signal Processing, Informatics, Communication and
Energy Systems (SPICES). Pp. 1 - 4, DOI:
10.1109/SPICES.2015.7091534

[4] Vyas, Keerti, Ginni Jain, Vijendra K. Maurya and Anu
Mehra. 2015. Analysis of an Efficient Partial Product
Reduction Technique. 2015 International Conference on
Green Computing and Internet of Things (ICGCIoT). pp 1 -
6, DOI: 10.1109/ICGCIoT.2015.7380417

[5] Anitha, P., P. Ramanathan. 2014. A new hybrid
Multiplieusing Dadda and Wallace Method. 2014
International Conference on Electronics and Communication
Systems (ICECS). pp 1 - 4, DOI: 10.1109/ECS.2014.6892623

[6] Chopade, S.S. and Rama Mehta. 2015. Performance Analysis
of Vedic Multiplication Technique using FPGA. 2015 IEEE
Bombay Section Symposium (IBSS), September 2015,
Mumbai, pp. 1 – 6. DOI: 10.1109/IBSS.2015.7456657

[7] Bisoyi, Abhyarthana,Mitu Baral, Manoja Kumar Senapati.
2014. Comparison of a 32-bit Vedic Multiplier with a
Conventional Binary Multiplier. 2014 International
Conference on Advanced Communication Control and
Computing Technologies (ICACCCT). pp 1757 - 1760, DOI:
10.1109/ICACCCT.2014.7019410

[8] Mhaidat, Khaldoon M., Abdulmughni Y. Hamzah. 2014. A
New Efficient Reduction Scheme to Implement Tree
Multipliers on FPGAs. 2014 9th International Design and
Test Symposium. pp 180-184, DOI:
10.1109/IDT.2014.7038609

[9] Bathija, R.K., R.S. Meena, S. Sarkar, Rajesh Sahu, “Low
Power High Speed 16x16 bit Multiplier using Vedic
Mathematics”, International Journal of Computer
Applications (0975 – 8887), Volume 59– No.6, pp. 41-44,
December 2012

[10] Rao, Jagadeshwar M, Sanjay Dubey, “A High Speed and
Area Efficient Booth Recoded Wallace Tree Multiplier for
fast Arithmetic Circuits”, 2012 Asia Pacific Conference on
Postgraduate Research in Microelectronics & Electronics
(PRIMEASIA), pp. 220-223, 2012.

[11] Jain, Anna, Baisakhy Dash, Ajit Kumar Panda, Muchharla
Suresh. 2012. FPGA Design of a Fast 32-bit Floating Point
Multiplier Unit. International Conference on Devices,
Circuits and Systems (ICDCS), pp. 545-547.

[12] Su, Arish and R. K. Sharma. 2015. An Efficient Binary
Multiplier Design for High Speed Applications using
Karatsuba Algorithm and Urdhva-Tiryagbhyam Algorithm.
2015 Global Conference on Communication Technologies
(GCCT), pp 192 - 196, DOI: 10.1109/GCCT.2015.7342650

[13] Gokhale, G. R., and P. D. Bahirgonde. 2015. Design of
Vedic-Multiplier using Area-Efficient Carry Select Adder.
2015 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). pp. 576-581,
DOI: 10.1109/ICACCI.2015.7275671

[14] Sharma, Richa, Manjit Kaur and Gurmohan Singh. 2015.
Design and FPGA Implementation of Optimized 32-Bit
Vedic Multiplier and Square Architectures. 2015
International Conference on Industrial Instrumentation and
Control (ICIC) College of Engineering Pune, India. May 28-
30, 2015. pp. 960-964, DOI: 10.1109/IIC.2015.7150883

[15] Ram, G. Challa, Y. Rama Lakshmanna, D. Sudha Rani and
K.Bala Sindhuri. 2016. Area Efficient Modified Vedic
Multiplier. 2016 Internbational Conference on Crircuit and
Computing Technologies (ICCPCT), pp 276 - 279, DOI:
10.1109/ICCPCT.2016.7530294

[16] Thapliyal, Himanshu and M. B. Srinavas. 2005. A Novel
Time-Area-Power Efficient Single Precision Floating
Multiplier. Proceedings of MAPLD 2005, pp. 1 - 3, DOI:
10.1.1.97.1539

[17] Anane, N., H. Bessalah, M. Issad and M. Anane. 2009.
Hardware Implementation of Variable Precision
Multiplication on FPGA. 4th International Conference
Design & Technology of Integrated Systems in Nanoscal Era,

Novel Mantissa Similarity Investigator for Path-Delay Reduction of Product Mantissa Calculation

Proceedings of Academicsera 25th International Conference, New York, USA, 16th-17th July 2018

8

2009 (DTIS '09). on pp 77-81. DOI:
10.1109/DTIS.2009.4938028

[18] Ramesh, Addanki Purna, A. V. N. Tilak and A. M. Prasad.
2013. An FPGA based high speed IEEE-754 double precision
floating point multiplier using Verilog. 2013 International
Conference on Emerging Trends in VLSI, Embedded System,
Nano Electronics and Telecommunication System
(ICEVENT), pp. 1 - 5, DOI:
10.1109/ICEVENT.2013.6496575.

[19] Gupta, Aman, Satyam Mandavalli, Vincent J. Mooney, Keck-
Voon Ling, Arindam Basu, Henry Johan, Budianto
Tandianus. 2011. Low Power Probabilistic Floating Point
Multiplier Design. 2011 IEEE Computer Society Annual
Symposium on VLSI. Volume 24 (3), pp. 182 - 187, DOI:
10.1109/ISVLSI.2011.54

[20] Havaldar, Soumya and K S Gurumurthy. 2016. Design of
Vedic IEEE 754 floating point multiplier. 2016 IEEE

International Conference on Recent Trends in Electronics,
Information & Communication Technology (RTEICT).
Volume 24 (3), pp 1131 - 1135, DOI:
10.1109/RTEICT.2016.7808008

[21] Kuang, Shiann-Rong, Jiun-Ping Wang, and Hua-Yi Hong.
2010. Variable-Latency Floating-Point Multipliers for Low-
Power Applications. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol 18 (10). pp. 1493-1497.
DOI: 10.1109/TVLSI.2009.2025167

[22] George, Marcus and Geetam Singh Tomar. 2015. Hardware
Design Procedure: Principles and Practices. 2015 Fifth
International Conference on Communication Systems and
Network Technologies. pp. 834 - 838.

[23] Institute of Electrical and Electronic Engineers (IEEE). 1993.
IEEE Standard VHDL Language Reference Manual. IEEE
1076.3.

[24] Perry, D. 1998. VHDL. 3rd ed. New York: McGraw-Hill.



