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Abstract - Floating point multiplication is a very important component of many engineering applications such as signal 
processing, video processing and image processing. In floating point multiplication, the mantissa calculation operation caters for 
the majority of time for the process. Because of this it is important to consider the speed up of the mantissa multiplication 
process in order to speed up systems that utilize floating point multiplication. This paper presents the development of a novel 
Mantissa Similarity Investigator (MSI) which can be interfaced to any product mantissa calculator to reduce the path delay of 
the multiplication operation. The system was synthesized for a variety of FPGA targets using Xilinx ISE Design Suite 14.7 
Commercial Edition. The Mantissa Similarity Investigator (MSI) was interfaced to a Mantissa Calculator developed for this 
project, to form a complete novel MSI-Interfaced Mantissa Calculator. The path delay of this system was compared with 
existing implementations of 24-bit, 53-bit, 113-bit and 237-bit binary multipliers which represent mantissa multiplication at 
various precision levels. The novel MSI-Interfaced Mantissa Calculator achieved shorter path delay than its existing 
counterpaths reviewed. 
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I. INTRODUCTION 
 
Arithmetic Logic Units (ALUs) are very important 
components of processors that perform various 
arithmetic operations such as multiplication, division, 
addition, subtraction, cubing, squaring, etc. Off all 
operations the operation of multiplication is most 
elementary and most frequently used in ALUs. The 
operation of multiplication also forms the basis of 
many other complex arithmetic operations such as 
cubing, squaring, convolution, etc.   
 
According to [3] multiplication is the most 
elementary and most frequently used operation in 
ALUs. It allows one number to be scaled by another 
number. Floating-point multiplication is the 
arithmetic operation most frequently utilized and is a 
very important component of many engineering 
applications such as signal processing, video 
processing, image processing, etc. [12].  
 
Floating-point format can represent very small and 
large numbers when compared to fixed-point 
numbers, therefore the dynamic range of numbers 
that can be represented is greater [3]. Many processes 
in science utilize floating-point arithmetic and 
therefore there is a need to develop units with shorter 
path delay, smaller hardware utilization and less 
power consumption [3]. Multiplication consumes 
significant delay compared to other arithmetic units 
used in basic mathematical computations [14]. As a 
result it is beneficial in the area of mathematical 
computation to present faster and more efficient 
mechanisms for implementing mathematical 
operations which also can utilize less power. 
 

II. LITERATURE REVIEW 
 
[2] presented a study of five (5) high speed binary 
multipliers: Booth Multiplier, Modified Booth 
Multiplier, Vedic Multiplier, Wallace Multiplier and 
Dadda Multiplier.According to [2] the Modified 
Booth multiplier reduces the number of partial 
products generated compared to other multipliers 
while the Dadda multiplier minimizes the number of 
adders used when compared to the Wallace 
multiplier. [2] therefore proposed a new multiplier 
architecture called the Booth Dadda Algorithm which 
combined the benefits of the Modified Booth 
Multiplier and Dadda Multiplier. As such [2] 
indicated that this proposed architecture will reduce 
the hardware utilization because of the reduction of 
the number of adders used, and also increased its 
speed because of the reduction in the number of 
partial products formed. 
[4] presented an efficient method for partial product 
reduction for binary multiplier. This system was 
designed for the 16nm TSMH CMOS technology and 
was done using the Tanner EDA 14.1 development 
tool.  [4] also presented a study of several partial 
product techniques such as Wallace and Dadda 
schemes. According to [4] the Dadda multiplier 
performed less reductions than the Wallace 
multiplier. [4] also claims that the Dadda multiplier 
consumed less power and area than the Wallace 
multiplier. [4] also presented several compressors, eg. 
4 to 2 compressor which introduced a horizontal path 
as a result of limited propagation of the carry of the 
multiplier unit. [4] produced a gate level redesign of 
this compressor for maximizing performance. Two 
operating modes were considered: active mode and 
sleep mode. [4] examined 3 to 2, 4 to 2, 5 to 2 and 7 
to 2 compressors and their performance. According to 
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[4] the compressors with sleep transistors consumed 
on average 47.35% less power than the same 
architecture of compressor without sleep transistors. 
[4] also claims that the compressors with sleep 
transistors have less delay than the same architecture 
containing compressors without sleep transistors. 
[5] proposed an 8x8 hybrid tree multiplier system by 
combination of the Dadda and Wallace strategies. 
The system was implemented on the DSCH2 tool and 
simulated on MICROWIND with 0.25um technology. 
[5] indicated that the conventional 8x8 Dadda 
multiplier executes more addition operations and 
therefore overheads due to wiring are greater. The 
decomposition logic type Dadda multiplier has partial 
products which are divided into four (4) parts and 
partial product addition (PPA) reduction is performed 
on each part and these results in the reduction of the 
path delay [5]. The proposed approach includes the 
assignment of the name group1, group2, group3 and 
group4 to the four decomposition blocks and each 
group is assigned either a 4x4 Dadda or 4x4 Wallace 
algorithms to be used for compressing the partial 
products. The preliminary results of the [5] indicate a 
40% reduction in power (via analysis of Power Delay 
Product PDP) was achieved for the proposed system 
over existing 8x8 Dadda, Wallace, Decomposed 
Dadda and Partitioned-type multiplier without 
compressors. 
[6] presented a high speed multiplier system which 
was based on Vedic mathematics. [6] also does a 
comparison of the implemented multiplier with the 
conventional binary multiplier in 8-bit, 16-bit and 32-
bit modes. The multipliers were designed and 
implemented using VHDL for the target device 
Spartan 3 XC3S50a-4tq144 using Xilinx 14.7 ISE. 
[6] indicated that the both the Urdhava and Nikhilam 
Sutra algorithms showed significant improvements in 
delay over the conventional binary multiplier at 8, 16 
and 32-bit modes. 
[8] presented the implementation of a new and 
efficient reduction scheme for implementation of tree 
multipliers on FPGAs. The system implemented was 
not a binary multiplier system but rather a reduction 
scheme for partial product reduction. [8] proposed 
using a library of m:n counters of varying sizes in 
order to maximize the partial product reduction 
operation  of the system, hence reducing the number 
of reduction steps hence minimizing latency and 
hardware utilization of the multiplier. The 32-bit 
multiplier scheme was implemented in Verilog on 
Xilinx ISE suite and targeted the Xilinx Spartan-6 
platform.  
[9] presented the implementation of a low power, 
high speed 16-bit binary multiplier using Vedic 
mathematics. The design started with the construction 
of a 2x2 multiplier block which is used in the 
construction of a 4x4 multiplier block, after which a 
8x8 multiplier block is constructed. The required 
16x16 multiplier block was constructed using the 8x8 
multiplier blocks.  

 [10] presented the implementation of a high speed, 
area efficient 16-bit Vedic Multiplier and 32-bit 
Booth Recoded Wallace Tree multiplier for use in 
implementation of arithmetic circuits. The system 
was implemented in Verilog HDL and synthesized 
for Xilinx Virtex 6 FPGA device. [10] reported that 
the multiplier systems implemented had path delays 
of 13.45ns and 11.57ns respectively. The hardware 
utilization was not stated.[11] presented the design of 
a 24-bit binary multiplier for use in the 
implementation of a 32-bit floating point multiplier. 
Vedic Mathematics was utilized in the 
implementation.  
[12] proposed an efficient strategy for unsigned 
binary multiplication which was expected to improve 
the implementation in terms of path delay and area. 
[12] utilized a combination of Karatsuba algorithm 
and Urdhva-Tiryagbhyam algorithm in implementing 
the required system. The Karatsuba algorithm was 
implemented such that the two inputs were multiplied 
using vertical and crosswise multiplication method, 
the partial products are generated and summed up. 
The Urdhva-Tiryagbhyam algorithm on the other 
hand is best suited for multiplication of large numbers 
and the strategy is a divide and conquer one in which 
the numbers are divided into their most significant 
and least significant half after which multiplication is 
performed. The system of[12] was implemented 
using Verilog HDL using a target Spartan-3E and 
Virtex-4 FPGA. 8-bit, 16-bit, 24-bit and 32-bit 
versions of the multiplier were implemented. The 
delay of each was obtained and compared with 
existing systems of same bit sizes. [12] indicated that 
the proposed 8-bit, 16-bit and 24-bit versions 
outperform their counterparts when it came to path 
delay while the 32-bit did not perform better than its 
32-bit counterparts.  
[13] designed an area-efficient multiplier using 
modified carry select adders (CSLAs) based on 
crosswise and vertical Vedic multiplier algorithms. 
The conventional BEC-based CSLAs utilized one 
ripple carry adder (RCA) and one binary to excess 
one converter (BEC) instead of dual ripple carry 
adders (RCAs) in its implementation. The modified 
CSLA consisted of three stages – half sum 
generation, final sum generation and carry generation 
[13]. [13] claimed that the 8-bit modified CSLA has 
shorter latency than the conventional 8-bit Vedic 
multiplier. This modified CSLA was then used in 
implementation of proposed 8-bit Vedic Multiplier. 
[13] reported that the path delay of the proposed 
Vedic Multiplier was 45.68ns while the hardware 
utilization was 1380 gates. 
[14] presented the design of a high speed 32-bit 
multiplier architecture based on Vedic mathematics. 
[14] implemented this system by adjustment of the 
partial products using concatenation approach. The 
partial products are also added using carry-save 
adders instead of two adders at each stage of partial 
product reduction. The system of [14]  was 
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implemented on the Xilinx Spartan-3E device 
XC3S500e-fg320-5. [14] reported that the 8-bit, 16-
bit and 32-bit Vedic multiplier implementations had 
path delays of 13.43ns, 17.62ns and 22.47ns 
respectively.  
 
III. CONTRIBUTION OF THE RESEARCH 
 
Most of the multiplier systems reviewed in this paper 
carried out the processes of partial product 
generation, partial product storage and partial product 
reduction. For example, multipliers developed in [2], 
[3] and [4] perform partial product reduction using 
Wallace or Dadda multipliers, thereafter the results 
are compressed using compressors. Others like [5] 
use a combination of multiplier and compressor 
techniques to perform the partial product reduction 
segment.  Most of the existing systems reviewed 
utilized Vedic mathematics for partial product 
generation. Multiplier systems in [14], [13] and [16] 
for instance developed Vedic multipliers by utilizing 
smaller multipliers as building blocks to developing 
bigger multipliers. For instance,the construction of a 
2x2 multiplier block which is used in the construction 
of a 4x4 multiplier block, after which an 8x8 
multiplier block is constructed.  Some multiplier 
systems such as that in [10] concurrently added the 
partial products during the multiplication operation, 
hence reducing the delay at the expense of hardware 
utilization. Others like [17] added the partial products 
as they were generated to reduce demands for 
memory for storage of partial products.  Others like 
[19] proposed a technique for low power operation 
which utilized both Sleep and BIVOS techniques. 
When starting from the columns of least significance, 
some columns are switched to sleeping mode while 
the remaining is supplied with a biased voltage. This 
method resulted in a loss in accuracy. None of the 

existing binary multiplication systems analyzed past 
multiplication operations to further reduce path delay 
of the multiplication operation. Focusing on previous 
multiplication operations could benefit future 
multiplications, hence preventing the system from 
having to undergo lengthy partial product generation 
operations especially in the case of quadruple and 
octuple precision modes where the number of partial 
products can become very large. The path delay of 
existing binary multipliers are long and should be 
reduced to ensure that the systems they are utilized in 
have shorter path delays themselves. 
 
The contribution of this paper will be the 
development of a novel Mantissa Similarity 
Investigator (MSI) which can be connected as the 
front end to any existing Product Mantissa Calculator 
for any floating point multiplier system to the reduce 
the path delay of the mantissa multiplication process. 
The MSI unit will result in the mantissa calculator 
having shorter path delay than all existing 
implementations of binary multipliers. This 
contribution will likely be extremely useful to 
arithmetic operations in digital and computer systems 
presently and in the future. 
 
IV. DESIGN OF NOVEL MANTISSA 
SIMILARITY INVESTIGATOR  
 
The Mantissa Similarity Investigator (MSI) (Fig. 1.) 
consisted of eight (8) inputs and three (3) outputs. 
The input clk is the periodic clock waveform to the 
system. When reset is asserted HIGH the entire 
system is initialized and the default state is enforced. 
precision_mode is used for selection of the floating-
point precision mode (single, double, quadruple, 
octuple).  

 
Fig. 1.  FSM-D Interface Definition for Mantissa Similarity Investigator (MSI) 

 
Before any similarity check (check_similarity) 
process is conducted, all inputs are analyzed to ensure 
that there are no redundancies. This provides several 
benefits to the system all of which reduce 
unnecessary interaction with the memory storage 
element of the MSI unit (Self-Ordering RAM block), 

hence possibly reducing the path delay. The first 
benefit stems from avoiding the system performing 
duplicate searches. For instance, if the requirement is 
to perform eight (8) single precision floating point 
multiplication operations and say two of the batches 
have the same inputs A (multiplicand) with B 
(multiplier), then the system performs only one 
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similarity check and uses the result for both input 
batches. If all eight (8) input batches are identical, 
then only one similarity check will be done. This is 
expected to reduce the path delay. The second benefit 
stems from avoiding storage of duplicates. The 
instance the system discovers the occurrence of 
duplicate batches of inputs A (multiplicand) with B 
(multiplier), it makes a record of it in the form of a 
“input_similarity_code” which utilizes digits 0-7 to 
indicate how similar inputs are to each other. When 
adding new products, the system refers to this code to 
determine which new products should be added to the 
Self-Ordering RAM block. When check_similarity is 
asserted HIGH and add_new_products is asserted 
LOW the system utilizes inputs A (multiplicand) with 
B (multiplier) to determine if such inputs were 
multiplied in the past by conducting a search of the 
Self-Ordering RAM block. Before performing a 
search, the system checks for redundancies in the 
input A (multiplicand) with B (multiplier) batches to 
avoid unnecessarily searching the Self-Ordering 
RAM block. This process results in the production of 
an 8-bit “input_similar_code”. Once this is done the 
similarity check process can proceed. If a match is 
found then the product corresponding to those inputs 
is assigned as a batch of the 474-bit similar_products 
output, and a logic 1 is assigned to the corresponding 
bit of the 8-bit similarity_code which generally 
indicates which of the batches (or segments) of 
similar_products holds a product computed in the 
past. When all batches of inputs are processed, the 
done signal will be asserted HIGH to indicate the end 
of the process in both cases (checking similarity and 
adding new products).  When check_similarity is 
asserted LOW add_new_products is asserted HIGH 
the system adds the new products generated by the 
novel MSI-prepared binary multiplier system (found 
on the 474-bit port new_products) to the memory 
storage element of the MSI unit (Self-Ordering RAM 
block) for future similarity checks. Before adding 
new products, the system checks the 

“input_similarity_code” created prior to the similarity 
check process. Depending on this the system will 
know which of the products is expected to be a 
redundancy and which should not be added to the 
Self-Ordering RAM block. Once this is done then the 
system can proceed with the addition of new 
products.   
 To minimize the time taken for future similarity 
checks two considerations were taken into account in 
the design of the RAM block. First the RAMblock 
was divided into sectors. Each sector represents a 
portion of the range of numbers that can be 
represented at the selected precision level. Hence, 
prior to adding data, the MSI unit determines which 
of the sectors of the RAMblock the data must be 
added to. Therefore, when a similarity check for a 
particular input pair of A (multiplicand) with B 
(multiplier), the search is conducted on only that 
sector of the RAMblock. The second design 
consideration was that the RAMblock is made a Self-
Ordering RAMblock, meaning as data is added to its 
sectors, all data in the sector will be arranged in 
ascending order. As such when a similarity check is 
done the search can begin within the vicinity of 
numbers in which the inputs A (multiplicand) with B 
(multiplier) are likely to be found.  The datapath 
design of the mantissa similarity investigator 
comprised of sixteen (16) blocks. A data organizer 
(Block 1D) organizes inputs A (multiplicand) with B 
(multiplier) such that batches of multiplicand and 
multiplicands can be easily used for similarity checks 
or for adding new products.  A Mantissa Calculator 
was developed for the purpose of validation of the 
effect of MSI on mantissa calculation. The Mantissa 
Calculator was then combined with the Mantissa 
Similarity Investigator (MSI) to form the complete 
modified novel MSI-Interfaced Mantissa Calculator 
which was expected to result in significant reduction 
in path delay in all precision modes. The datapath 
design (Fig. 2.) of the novel MSI-Interfaced Mantissa 
Calculator.  

 
Fig. 2.  Datapath Design for the Novel MSI-Interfaced Multi-Precision Binary Multiplier Architecture 
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V. HARDWARE IMPLEMENTATION OF THE 
OF NOVEL MANTISSA SIMILARITY 
INVESTIGATOR 
 
The hardware implementation of the novel MSI-
interfaced mantissa calculator was implemented using 
VHDL in the Xilinx ISE Design Suite 14.7. The 
system consisted of several sub-modules and as such 
a structural approach was used in the implementation 
of the system. Sub-modules were port-mapped 
together to implement the datapath using knowledge 
gained in [23] and [24]. After implementation they 
were synthesized in the Xilinx ISE Design Suite 14.7 
in preparation for verification and validation stages.  

VI. VERIFICATION OF NOVEL MANTISSA 
SIMILARITY INVESTIGATOR 
 
The novel MSI-Interfaced Mantissa Calculator in 
single, double, quadruple and octuple precision 
modes was verified using a wide range of input 
multiplicand and multiplier values. Timing simulation 
was performed on all components of the multiplier 
system to determine if they were operating as 
expected. Simulation was done using ISim simulator 
on Xilinx ISE Design Suite 14.7. The system was 
implemented for all four (4) precision modes to verify 
that it correctly multiplied multiplicand and 
multipliers for a range of values at all four precision 
modes.  

 
Fig. 3.  ISim Simulation for Novel MSI-Interfaced Mantissa Calculator  

 
The actual outputs of the multiplier at all four 
precision modes were compared to the expected 
outputs to verify that they correctly multiplied the 
inputs. The comparison confirmed that all indicated 
that the multiplier’s actual outputs for all four 
precision modes corresponded to their expected 
results.  
 
VII. VALIDATION OF NOVEL MANTISSA 
SIMILARITY INVESTIGATOR 
 
The path delay of the MSI-Interfaced Mantissa 
Calculator for several FPGA targets (Table I) was 
determined via Post Place and Route Static Timing 
Report. Xilinx ISE Design Suite 10.1 was utilized for 
obtaining the post place and route static timing report 
for the Virtex 2 FPGA target because that target was 
not supported by Xilinx ISE Design Suite 14.7. Table 
II presents the maximum path delay of the novel 
MSI-Interfaced Mantissa Calculator with and without 
MSI used. 

TABLE I: FPGA PLATFORMS USED IN VALIDATION TESTING 
FPGA Platform Nomenclature 
Spartan 3 XC3S1000-4FG256 

Spartan 3A XC350A-4TQ144 
Spartan 3E XC3S100E-5TQ144 
Spartan 6 XC6SLX4-3TQG144 
Virtex 2 XC2V1000-5FG456C 
Virtex 4 XC4VFX12-10FF668 
Virtex 5 XC5VFX30T-2FF665 
Virtex 6 XC6VLX75T-3FF484 

 

TABLE II: MAXIMUM PATH DELAY OF NOVEL MSI-
INTERFACED MANTISSA CALCULATOR ARCHITECTURE WITH 

AND  WITHOUT MSI 

Precision 
Mode Platform 

Maximum 
Path Delay / 

ns 
No 

MSI MSI 

Single 
(8 

batches) 

Spartan 3 8.163 4.841 
Spartan 3A 7.087 2.498 
Spartan 3E 6.898 2.672 
Spartan 6 4.806 2.385 
Virtex 2 3.631 2.136 
Virtex 4 3.515 2.108 
Virtex 5 4.622 1.896 
Virtex 6 2.816 1.347 

Double 
(4 

batches) 

Spartan 3 8.484 3.476 
Spartan 6 4.984 2.180 
Virtex 2 4.712 1.689 
Virtex 4 4.629 1.610 
Virtex 5 4.079 1.674 
Virtex 6 3.374 1.377 

Quadruple 
(2 

batches) 

Spartan 3 9.274 5.132 
Spartan 6 5.546 2.435 
Virtex 2 4.681 2.114 
Virtex 4 4.856 1.817 
Virtex 5 5.189 1.637 
Virtex 6 3.153 1.547 

Octuple 
(1 batch) 

Spartan 3 10.612 6.534 
Spartan 6 5.608 2.428 
Virtex 2 5.488 2.818 
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Virtex 4 5.441 3.323 
Virtex 5 6.566 1.576 
Virtex 6 4.269 2.021 

 
When the developed mantissa calculator is equipped 
with MSI, the system is arranged such that if it 
determines that present inputs were used in binary 
multiplication operations in the past (referred to as 
‘similar inputs’), the system would avoid performing 
the multiplication operation completely and just 
utilize the previously computed product as the result, 
hence reducing the path delay. The more input 
batches that are determined to be similar inputs, the 
shorter the path delay is expected to get.   
 
To analyze the system performance in this case, the 
worst case and best case scenarios must have been 
considered. Once the MSI-interfaced mantissa 
calculator detects no similar inputs in the input 
batches, the system would not benefit from MSI at 
that instant, but is likely to benefit from MSI in the 
future if such inputs were determined to be similar for 
subsequent multiplication operations. The longest 
path delay for this system will correspond to the 
scenarios where all bits of input batches are non-zero. 
As such the inputs to the novel architecture were 
arranged such that all multiplicand and multiplier bits 
for all batches were non-zero. This was applied to all 
precision modes. 
 
It must be noted that only a few authors of 
documentation for existing 8-bit, 16-bit and 24-bit 
binary multiplier systems explicitly stated that the 
figures stated for delays of their multiplier systems 
was actually maximum path delays obtained after 
post place and route static timing analysis (consisting 
of logic delays, routing delays and clock skew), and 
not path delay obtained from the synthesis report (less 
accurate). Many of them indicated that their path 
delays were obtained after synthesis and as a result 
the delays stated may not include routing delays and 
clock skew.  The delays stated for the novel MSI-
interfaced mantissa calculator implemented in this 
paper are maximum path delays after post place and 
route static timing analysis. In this paper it was 
assumed that the authors of documentation for 
existing implementations of 8-bit, 16-bit and 24-bit 
binary multiplier systems provided maximum path 
delay after post place and route static timing analysis. 
The novel MSI-interfaced multi-precision binary 
multiplier implemented in this paper still had shorter 
delays than these existing multiplier systems. 
However, if the delays stated by authors of existing 
multiplier systems were indeed excluding routing 
delays and clock skew, it would mean that the novel 
MSI-interfaced mantissa calculator implemented in 
this paper performed much better than its existing 
counterparts.  

 

TABLE III: PERFORMANCE COMPARISON BETWEEN NOVEL 24-
BIT BINARY MULTIPLIER ARCHITECTURE AND VARIOUS 8-BIT 

BINARY MULTIPLIERS REVIEWED 
Source Multiplier Pat

h 
Del
ay / 
ns 

This Paper Novel MSI-Interfaced 
Mantissa Calculator (Single 
Precision mode) 

See 
Tab
le 
II 

[5] – 
DSCH2 tool 

Regular Dadda Multiplier 4.4
0 

Decomposed Dadda 
Multiplier 

4.1
0 

Partitioned Dadda Multiplier 5.5
0 

Wallace Tree Multiplier based 
on 3:2, 4:2 & 5:2 compressor 

9.4
0 

Dadda Multiplier based on 
Higher Order Compressors 

6.4
0 

Proposed Hybrid Multiplier 
Combination 
(Dadda/Wallace/Wallace/Dad
da) 

7.5
0 

[6] – 
Spartan 3 
XC350A-
4TQ144 

Conventional Multiplier 11.
00 

Urdhava Vedic Multiplier 5.5
0 

Nikhilam Sutra Vedic 
Multiplier 

6.2
5 

[12] – 
Virtex 4 
(XC4VFX1
2-10FF668) 

Vedic Multiplier 9.4
0 

[13] – 
Spartan 3 
(XC3S1000-
4FG256) 

Vedic Multiplier 45.
68 

[14] – 
Spartan 3E 
(XC3S100E
-5TQ144)  

Vedic Multiplier 13.
43 

[15] – 
Spartan 3 
(XC3S500-
5FG320) 

Vedic Multiplier 23.
18 

TABLE IV: PERFORMANCE COMPARISON BETWEEN NOVEL 24-
BIT BINARY MULTIPLIER ARCHITECTURE AND VARIOUS 16-BIT 

BINARY MULTIPLIERS REVIEWED  
Source Multiplier Path  

Delay / 
ns 

This Paper Novel MSI-Interfaced 
Mantissa Calculator 
(Single Precision 
mode) 

See 
Tables 

II & III 

[9] Vedic Multiplier 27.15 
[10] – Virtex 6 Vedic Multiplier 13.45 
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(XC6VLX75T-
3FF484)    
[6] – Spartan 3 
(XC3S1000-
4FG256)  

Conventional 
Multiplier 

11.00 

Urdhava Vedic 
Multiplier 

6.00 

Nikhilam Sutra Vedic 
Multiplier 

6.00 

[12] – Virtex 4 
(XC4VFX12-
10FF668) 

Vedic Multiplier 11.51 

[14] – Spartan 
3E 
(XC3S100E-
5TQ144) 

Vedic Multiplier 17.62 

[15] – Spartan 
3 (XC3S500-
5FG320) 

Vedic Multiplier 38.82 

 
TABLE V: PERFORMANCE COMPARISON BETWEEN NOVEL 24-
BIT BINARY MULTIPLIER ARCHITECTURE AND VARIOUS 24-BIT 

BINARY MULTIPLIERS REVIEWED 
Source Multiplier Path 

Delay 
/ ns 

This Paper Novel MSI-Interfaced 
Mantissa Calculator 
(Single Precision mode) 

See 
Table 

II 
[11] Vedic Multiplier 16.32 
[12] – Virtex 
4 
(XC4VFX12-
10FF668) 

Vedic Multiplier 13.00 

 
CONCLUSION 
 
This paper presented the implementation, verification 
and validation of a novel Mantissa Similarity 
Investigator (MSI) capable of being attached to any 
product mantissa calculator to result in reduction in 
path delay of the mantissa multiplication process. 
Finally, the system developed without the use of MSI 
performs has shorter path delay than existing systems. 
However, the development of the MSI unit and the 
incorporation of it in the a novel MSI-interfaced 
mantissa calculator resulted in a system that has path 
delay that is significantly shorter than that of existing 
binary multiplier systems.MSI can be applied to other 
arithmetic units such as floating point dividers and 
square units to further reduce the path delays of their 
operations. 
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