URBAN GROWTH DETECTION USING MORPHOLOGY OF SATELLITE IMAGE

1KHAING CHO MOE, 2MYINT MYINT SEIN

1,2University of Computer Studies, Yangon, Myanmar
E-mail: khaingchomoe.ucsy@gmail.com, myintucsy@gmail.com

Abstract- Rapid urbanization and urban growth is continuing to be one of the crucial issues of global change affecting physical dimensions of cities. In this study, building growth change detection is investigated as buildings are one of the most dynamic structures in urban areas. The modified MBI is applied to extract building features to know how much area has changed. To accurate the position of building extraction index in change detection process, image registration is used that seeks to remove the two-date images geometric inconsistent object using SURF and RANSAC. It is significantly reduce error rates and improve overall accuracy of change detection process. The experiments show that the proposed change detection algorithms can achieves satisfactory correctness rates with a low level of error rate, and give better result than SIFT feature extraction method in image registration.

Keywords- Urban Growth, Modified MBI, SURF, SIFT, Change Rule.

1. INTRODUCTION

Urban growth detection is very important in urban monitoring such as the detection of new buildings or the discovery of modifications in the existing ones with the use of GIS and Remote Sensing (RS). RS technology provides data from which updated land cover information can be extracted efficiently and cheaply that is presented in Reference. Land use change detection has become a major application of remote sensing data.

Traditional satellite or airborne image-based automatic building change detection methods are mainly based on radiometric information analysis is presented in reference. The images acquired at two dates are compared pixel by pixel based on the original spectral information. In particular, if particular objects are of interest, as in our case buildings, it is very difficult to extract those without height information. Many irrelevant changes will be mixed with building changes, when the data are acquired from different sensors or acquired under different imaging geometrics.

Moreover, building may be surrounded by dense vegetation; they may have the same color as tree or grass. Awrangb et al. proposed NDVI only and therefore can’t distinguish between a green building and a green tree. Jin and Davis presented an automated building extraction strategy that simultaneously exploited structural, contextual and spectral information. They applied morphological profiles to extract structural information, reliable contextual information and bright buildings. The final result was obtained by integrating the results of the three different information sources. The problem of this morphological profile causes to commission and omission error. So, X. Hang and L. Zhang and exploited a new method Morphological Building Index (MBI) to extract building area without commission and omission error. The proposed framework was validated on an Ikonos image and World View-2 images that is implemented in an object-based environment, where a geometrical index and a vegetation index are then used to remove noise from narrow roads and bright vegetation. But this method is applied only on multispectral bands of high resolution satellite images and can’t detect low resolution images such as Google earth image.

Then, image registration is a fundamental task in change detection process used to rectify two images which are taken at different time, from different sensors or different viewpoints in reference. Automatic registration of remote sensing images is a difficult task because it must deal with the intensity changes and variation of scale, rotation and illumination. To perform image registration, it is required three steps: feature detection, feature matching, derivation of transformation function, reconstruction of images.

In this system, we proposed urban growth detection system with three parts: image registration, building feature extraction and change rule.

Image registration is carried out by combining of SURF (Speed-Up Robust Feature) and RANSAC for the same scene with different angles of yearly images.

And then resulted registered image is used to extract building area with modified MBI and finally changed areas are detected by applying change rule. The rest of the paper is organized as follow. Section 2 describes the system overview and section 3 discusses methodology of our proposed system containing image registration, modified MBI and change rule. Section 4 illustrates the experimental results and section 5 concludes the paper.
II. SYSTEM OVERVIEW

The system is divided into three parts. Firstly two input images are rectified by using SURF registration method to get registered images. It can accurately determine the position of two images in change detection process as various viewpoints with different sensors. Then, the system is carried on building feature extraction process by modified MBI method reference that have human intervention is not required and it is solely unsupervised process. This modified method is effective for building only extraction and convenient in even low resolution satellite imagery such as Google earth. The challenge of original MBI is that multispectral band of high resolution satellite image can only be applied and haven’t considered registration method for better accuracy. Our system can do both high and low resolution satellite image with rectified images. Then resulting building area image is processed by change rule and the final increase buildings are displayed.

III. SYSTEM METHODOLOGY

A. Image Registration

Image registration is a crucial step in most image processing tasks for which the final result is achieved from the combination of various resources. It presents a way to extract distinctive invariant features from images that can be used to perform reliable matching between different views of an object/scene. It has three parts: feature extraction, outlier rejection and reconstruction.

a. SURF Feature Point Extraction method

The Speed-Up Robust Feature (SURF) method is quickly searching for matching points. It is robust image detector and descriptor so it reduces the computation time and causes low dimensionality so that SURF is better than other method with respect to repeatability, distinctiveness, robustness and speed. SURF detector is mainly based on the approximated Hessian Matrix which causes good performance and good accuracy. Suppose in the image I, X=(x,y) is the given point, then the Hessian metrics H(x , σ) for the X having the Scale σ, is defined in equation (1).

\[
H(x,\sigma) = \begin{bmatrix}
L_x(x,\sigma) & L_y(x,\sigma) \\
L_y(x,\sigma) & L_y(y,\sigma)
\end{bmatrix}
\]

(1)

where \(L_{x}(X, \sigma)\) is the convolution of the Gaussian second order derivative with the image at point X, and similarly for \(L_{y}(X, \sigma)\) and \(L_{y}(X, \sigma)\).

b. Random Sample Consensus (RANSAC) algorithm

After matching control point pairs have been identified, RANSAC algorithm is used to eliminate the outlier control point pairs of obtained a set of observed data. It can cope a large proportion of outliers in the input data that is proposed in reference.

Algorithm:

1. Select random sample of minimum required size to fit model
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set

Repeat 1-3 until model with the most inliers over all samples is found.

The output of the RANSAC algorithm can be shown as fig. 1. The advantages of using RANSAC outlier rejection method are it can robust to outliers and computational time grows quickly. And the number of hypothesis is sufficiently large that RANSAC gives very similar results.

![Fig. 1: Outlier elimination using RANSAC](image)

c. Affine Transformation

The most commonly used registration transformation is the affine transformation which is sufficient to match two images of a scene taken from the same viewing angle but from different position.

Given the refined matching point pairs, building the mapping function and get the affine transformation parameters to resample the sensed image and perform image registration.

B. Modified Morphological Building Index

The basic idea of MBI is to build the relationship between the spectral-structural characteristics of buildings and the morphological operator, which are summarized as follows.

- Brightness
- Local contrast
- Size and Directionality
- Shape

This method uses multispectral bands for high resolution images. Now we use low resolution image of three band color. The modified MBI is defined by describing the characteristic of building feature especially color of building roof and image intensity value. The system runs on low resolution satellite images so their resolution and brightness of intensity values are very low. In order to achieve this problem, modified MBI is proposed as the following steps:

Step I: Enhancement of Image

The input low resolution registered image is transformed to high contrast image by applying with...
only red intensity value and stored as the brightness value which is computed by equation (2).

\[g = T(f_g(x,y)) \]

(2)

where \(f_g(x,y) \) is the intensity transformation of red color-space image, \(g \) is the result of enhanced red band image using histogram adjust. Now our method gives for both high and low resolution of various satellite images.

Step 2: Construction of MBI

The spectral-structural characteristics of buildings (e.g., contrast, size and directionality) are represented using the Differential Morphological Profile (DMP). The construction of MBI contains three steps.

(i) White top-hat by Reconstruction can be computed by equation (3).

\[W_{\text{TH}}(d,s) = g - \gamma_{ht}^R(d,s) \]

(3)

where \(\gamma_{ht}^R \) represents the opening-by-reconstruction of the brightness image, and \(s \) indicates a flat and disk-shaped linear structuring element (SE), respectively.

(ii) Morphological Profiles (MP) of the white top-hat is defined as equation (4) and (5).

\[MP_{W_{\text{TH}}}(s) = W_{\text{TH}}(s) \]

(4)

\[MP_{W_{\text{TH}}}(s) = 0 \]

(5)

(iii) Differential Morphological Profiles (DMP) of the white top-hat is calculated as equation (6).

\[\text{DMP}_{W_{\text{TH}}}(s) = |MP_{W_{\text{TH}}}(s + \Delta s) - MP_{W_{\text{TH}}}(s)| \]

(6)

where \(\Delta s \) is the interval of the profiles and \(s_{\text{min}} \leq s \leq s_{\text{max}} \). MBI is defined as the average of the DMPs of the white top-hat profiles defined in equation (7) and (8) since buildings have large local contrast in different directions within the range of the chosen scales. Thus

\[MBI = \frac{\sum_{s} \text{DMP}_{W_{\text{TH}}}(s)}{D \times S} \]

(7)

\[S = \left(\frac{s_{\text{max}} - s_{\text{min}}}{\Delta s} \right) + 1 \]

(8)

where \(D \) and \(S \) denote the numbers of disk and scale of the profiles, respectively.

Step 3: Building extraction

IF MBI(x) \(\geq t_1 \), THEN \(\text{map}_1(x) = 1 \)

ELSE \(\text{map}_1(x) = 0 \)

where MBI(x) and \(\text{map}_1(x) \) indicate the value of MBI and the initial label for pixel \(x \). \(t_1 \) is threshold value and set \(t_1 = 5 \) for the best result for the system.

C. Change rule

After building only areas are extracted by modified MBI in two images, matched-based change rule is applied to get final change/increase building areas.

\[\text{map}_1(i) \cap \text{map}_2(i) \]

then \(C(i) = 0 \).

elseif \(\text{map}_1(i) \cap \text{map}_2(i) \)

then \(C(i) = 1 \).

elseif \(\text{map}_1(i) \cap \text{map}_2(i) \)

then \(C(i) = 0 \).

else \(\text{map}_1(i) \cap \text{map}_2(i) \)

then \(C(i) = 0 \).

end \(i = 1,2,3,..., N \)

where \(\text{map}_1(i) \) and \(\text{map}_2(i) \) are the output value(0 and 1) of modified MBI method. ‘0’ means no building and ‘1’ means building. The \(i \) is the same pixel of first and second images and \(N \) is the number of pairs of the corresponding building objects where \(C(i) \) represents whether the object \(i \) is changed, with 0 and 1 for non-change and change, respectively.

IV. DATASETS

The analysis of the building change detection is carried out based on ten year satellite images from Google earth acquired between 2004 and 2014. The first five years and second five years images are divided and which portion is more or less developed. Those all images include three visible spectral bands as red, green and blue. The study area lies in the downtown area of Yangon city and covers approximately ten seconds coordinates. It is a typical urban landscape of Myanmar where dense residential and commercial areas are mixed together. Due to the rapid infrastructure construction and updated developing country, the study area shows complicated land-cover change. In order to effectively evaluate building change detection algorithms, we use manually delineated ground truth maps of buildings change. Newly and rebuild building area define changed building ones in our system.

V. EXPERIMENTAL RESULTS

The experiment of the system is tested in Sanchaung townships, Yangon. The following fig. 2 shows an example of ten year successive images from 2004 to 2013.

(a) Test area 2003 (b) Test area 2009 (c) Test area 2013

Fig. 2: An example of ten year test area images located in Sanchaung townships, Yangon.
Then, these ten year images are divided into two parts the first five years and second five years in order to know what year section is more or less developed. Then registration process is carried out to rectify various angles position of satellite images using SURF feature extraction method and RANSAC. Fig. 3(a) and 3(b) shows features extraction result of SURF method on two images and 3(c) illustrates matching point pairs of two images that include both corresponding point pairs and outliers but RANSAC algorithm is applied in this step so miss-matched points or outlier points is removed in fig. 3(d). After removing outliers, affine transformation is utilized to resample the sensed images in fig. 3(e).

The building extraction process is carried out using modified MBI as shown in fig. 4. In these figures, white area means building areas and black area indicates open space areas that have no buildings and can build anymore.

The following table is the processing of SURF feature method and RANSAC algorithm to obtain matching points pairs that is tested in ten years images of Sanchaung Townships, Yangon.

<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Sensed Image</th>
<th>Reference Image</th>
<th>Matched Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2004</td>
<td>393×1</td>
<td>471×1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2005</td>
<td>471×1</td>
<td>502×1</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>2006</td>
<td>502×1</td>
<td>556×1</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>2007</td>
<td>556×1</td>
<td>612×1</td>
<td>152</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>612×1</td>
<td>570×1</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>2009</td>
<td>570×1</td>
<td>612×1</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>2010</td>
<td>612×1</td>
<td>638×1</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>2011</td>
<td>638×1</td>
<td>477×1</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>2012</td>
<td>477×1</td>
<td>566×1</td>
<td>26</td>
</tr>
</tbody>
</table>

The table 1 describes comparison between SURF and SIFT of feature points detection and final matched point pairs of SURF feature are significantly more than SIFT ones. And then processing time is also faster than SIFT so SURF improves performance. The accuracy of the proposed modified MBI and change rule is compared with change detection approach of MBI-based CVA reference in.

MBI-based CVA focus on building change detection. The spectral bands are replaced by the multi-temporal MBI feature images for CVA. It contains the salt-and-pepper effects of pixel-based change detection approaches.

<table>
<thead>
<tr>
<th>Quantitative measures</th>
<th>MBI-based CVA</th>
<th>Proposed Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctness</td>
<td>81.75%</td>
<td>97.87%</td>
</tr>
<tr>
<td>Completeness</td>
<td>74.79%</td>
<td>92.45%</td>
</tr>
<tr>
<td>Quality</td>
<td>64.09%</td>
<td>89.07%</td>
</tr>
</tbody>
</table>

To test the performance of the proposed system, we use these evaluation measures (completeness, correctness, quality).
CONCLUSION

The contribution of this paper is to propose the building growth detection using modified MBI for satellite images which is able to solve various satellite images only with three spectral colors without using multispectral band images because the original MBI is only for multitemporal high-resolution imagery. The characteristic of the proposed method is unsupervised and it is implemented without any training samples so it is able to achieve higher correctness rates and lower average errors than other supervised algorithm.

The effectiveness of the proposed method has been validated on Google earth image of Yangon downtown region in Myanmar with different kinds of building growth including construction, updating and rebuild. The challenge of the proposed system is that user doesn’t know detail position (latitude and longitude) of change area and very low quality satellite image is weak to perform using modified MBI method.

REFERENCES

