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Abstract: This study deals with controlling the chaotic motion of flow in a thermal convection loop by using a sliding mode 
control signal. Time series, two-dimensional phase plots and three-dimensional phase plane of the chaotic flow in the 
thermal convection are presented graphically from its differential equations. Based on the sliding mode control theory, a 
Lyapunov function is assigned for ensuring the global asymptotic stability of the error system. Routh–Hurwitz criterions are 
also used for determining the signs of sliding mode parameters. Simulation results are demonstrated to verify the correctness 
of the theoretical results. They also show that the chaotic motion of flow in a thermal convection loops effectively controlled 
owing to a sliding mode controller. 
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INTRODUCTION 
 
Chaotic systems can be defined as a kind of 
deterministic nonlinear systems which include 
unpredictable and irregular dynamics. They behave 
alike stochastic systems. Their trajectories sensitively 
depend on initial conditions. Chaos is a very 
interesting phenomenon in a variety of fields 
including physics, chemistry, ecology, biology, and 
finance [1–5]. Many engineering applications also 
involve chaotic behaviours [6–8]. 
 
Chaotic control is also an important topic and paying 
attentions in physics, mathematics and engineering. 
Ott, Grebogi and Yorke published a paper which 
presents a chaos control strategy in 1990 [9]. After 
their pioneer work, chaos has been shown to be 
controllable. The method in [9] is named as OGY 
method. Many other control methods have been 
published for chaos control such as linear feedback, 
nonlinear feedback, time-delay feedback, active, 
adaptive, sliding mode, optimal, passive, 
backstepping, neural, and fuzzy control. Among 
them, sliding mode control is known as a robust 
control technique against of uncertainties in a control 
system. It also demonstrates effective controlling 
nonlinear systems like chaotic systems. Many 
researchers have focused on sliding mode control of 
nonlinear or chaotic systems. The sliding mode 
control method has been successfully applied for the 
control of Lorenz [10], Chua [11], Rössler [12], 
Duffing–Holmes [13], and many other chaotic 
systems [14]. 
 
A thermal convection loop is generally constructed 
from a pipe bent into a torus and standing in the 
vertical plane. Chaotic behaviour can be observed in 
such system when the heating rates exceed a certain 

threshold value. Chaos is an unwanted phenomenon 
for this situation. It causes some temperature 
vibrations which can increase drag in flow systems 
and exceed safe operational conditions in thermal 
systems. Therefore, eliminating the chaotic 
oscillations and making the flow approximately stable 
have significant importance. In some papers, the 
chaos in the thermal convection loop is successfully 
controlled by making small adjustments to the 
heating rate in response to events detected inside the 
loop [15–20]. Feedback [15], active [16, 17], optimal 
and adaptive [18], nonlinear active feedback [19], 
linear and nonlinear feedback [20] control methods 
have been used. In this study, the sliding mode 
control method is investigated. 
 
II. THERMAL CONVECTION LOOP  
 

 
Fig. 1. The thermal convection loop [18]. 

 
The schematic description of thermal convection loop 
is shown in Fig. 1 where g, d, D, θ, and Tw represent 
the gravitational acceleration, the diameter of the 
pipe, the diameter of the torus, the angular location of 
a point on the torus, and the wall temperature of the 
pipe, respectively. It is observed that when the 
temperature differences of horizontal and vertical 
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positions are measured as time function, heating and 
cooling temperature values can cause fluid movement 
in the system. 
 
The thermal convection loop is defined by a set of 
three autonomous differential equations [18]: 
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where the state variables x, y, and z represent the 
cross-sectional averaged speed, proportional to the 
fluid’s temperature differences between positions 3 
and 9 o’clock, and positions 12 and 6 o’clock around 
the loop, respectively. p is the loop’s Prandtl number 
and r is the loop’s Rayleigh number. The thermal 
convection loop displays chaotic behaviour when the 
parameter values are taken as p = 4 and r = 16 with 
the initial conditions x0 = 1, y0 = 1, and z0 = –9.9 [18]. 
 

 
(a) 

 
(b) 

 
(c) 

Fig.2. The time series of the chaotic thermal convection loop 
for (a) x signals, (b) y signals, (c) z signals. 

 
The time series of the chaotic thermal convection 
loop are shown in Fig. 2, the phase plots are shown in 
Fig. 3 and the 3D phase plane is shown in Fig. 4. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. The phase plots of the chaotic thermal convection loop 
for (a) x–y phase plot, (b) x–z phase plot, (c) y–z phase plot. 
 

 
Fig. 4. 3D phase plane of the chaotic thermal convection loop. 

 
The equilibrium point of chaotic thermal convection 
loop system can be found by assuming ẋ=0, ẏ=0, ż=0, 
and solving the following equation: 

( ) 0,
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Thus, system (1) has three equilibrium points: 
E1(0,0,–r), E2( 1r  , 1r  ,–1), and E3( 1r  , 1r 

, –1). 
 
III. CONTROL WITH SLIDING MODE 
CONTROL 
 
In order to control the chaotic motions of flow in the 
thermal convection loop to its equilibrium points, a 
sliding mode control signal u is added to the system 
(1). Hence, the system including the control signal 
becomes 
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,
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(3) 

An equilibrium point can be presented as (xd, yd, zd), 
then the trajectory error states are determined as e1 = 
x – xd, e2 = y – yd and e3 = z – zd. Thus, the state 
variables become x = e1 + xd, y = e2 + yd and z = e3 + 
zd. The error state dynamic equations of system (3) 
can be expressed by 
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(4) 

 
As a result of yd – xd = 0, –yd – xdzd = 0 and –zd – xdyd 
– r = 0, the error system (4) can be simplified as 
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(5) 

 
The system (5) clearly shows that if e2 is zero, then 
ė1=-pe1. Thus, if time goes to infinite, e1 will 
converge to zero. Hence, the required sliding surface 
may be chosen as 

2 1 3 ,s e k e   (6) 
 
where k1 is a real constant parameter. When sṡ is 
negative for all cases of s ≠ 0, sliding mode reaching 
condition is obtained. The sliding mode control signal 
can be constructed as follows: 

1 2 3 1 3
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where k2 and k3 are real constant parameters. The 
sign(s) is signum function where 

1, if 0,
sign( ) 0, if 0,

1, if 0.

s
s s

s


 
 

 

(8) 

The proposed control signal (7) assures that system 
(5) is onto the sliding surface s = 0. The derivative of 
sliding surface s is  

2 3sign( ).s k s k s    (9) 
 
A Lyapunov function is taken as V = 0.5s2. Its 
derivative with respect to time becomes 
 

2
2 3 ( )sign( ).V ss k s k s s    

 
(10) 

 
Therefore, if k2 ≥ 0 and k3 ≥ 0, then −k2s2 ≤ 0 and 
−k3(s)sign(s) = −k3|s| ≤ 0. Since V ≥ 0 and V ≤ 0, 
according to Lyapunov stability theory, the designed 
sliding surface s would globally converge to the zero 
error point. 
 
Substituting Eq. (7) into system (5) gives the 
following error dynamics 
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The Jacobian matrix of system (11) is: 
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For E1(0, 0, –r), the characteristic equation of matrix 
(12) is calculated as follows: 
 

2( )( )( 1 ) 0.p k          (13) 
 
From Eq. (13), it is easy to obtain that λ1 = –1. Since 
p > 0 and k2 ≥ 0, the other eigenvalues are also 
negative. 
 
For E2( 1r  , 1r  , –1), the characteristic equation 
of matrix (12) is calculated as follows: 

3 2
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For E3( 1r  , 1r  , –1), the characteristic 
equation of matrix (12) is calculated as follows: 
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According to the Routh–Hurwitz stability criterion, 
for a third-order system 

3 2
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all the eigenvalues are negative and the system will 
be stable if the coefficients satisfy 

1 2 3

1 2 3

0, 0, 0,
.

c c c
c c c
   

   
(17) 

Since p>0, r>0, and k2 ≥ 0, the Routh–Hurwitz 
stability criterions are provided with k1 ≥ 0 for E2 and 
k1 ≤ 0 for E3. Therefore, the global asymptotical 
stability of system (5) towards its equilibrium points 
is sustained by employing the sliding mode control 
method with the control function in Eq. (7) and the k1 
conditions. 
Hence, the sliding mode control of chaotic thermal 
convection loop system (3) is completed. 
 
IV. NUMERIC SIMULATIONS 
 
The fourth order Dormand–Prince method with 
variable time-step is used in all the numerical 
simulations. The previously mentioned parameter set 
and initial conditions are considered to ensure the 
chaotic behaviour of motion flow in a thermal 
convection loop. The sliding mode controller are 
activated at t = 25 in all simulations. The parameter k1 
is taken as k1 = 1 for the equilibrium points E1(0, 0, –
r) and E2( 1r  , 1r  , –1), and k1 = –1 for the 
equilibrium point E3( 1r  , 1r  , –1). The other 
gains of the sliding mode controller are considered as 
k2 = 1 and k3 = 0.1. Simulation results for the control 
of chaotic thermal convection loop system (3) 
towards equilibrium points E1, E2, and E3 by means of 
a sliding mode control signal are shown in Fig. 5, Fig. 
6, and Fig. 7, respectively. 
The Figs. 5–7 show that the chaotic motion of flow in 
a thermal convection loop is controlled to its 
equilibrium points, after the sliding mode controller is 
activated. So, the simulation results confirm the 
theoretical analysis. Numerical simulations also show 
the effectiveness of the proposed one state sliding 
mode controller. When it is activated at t = 25 with 
the unit gains, the control is completely observed at t 
≥ 32 for the equilibrium point E1(0, 0, –r), and at t ≥ 
29 for the equilibrium points E2( 1r  , 1r  , –1) 
and E3( 1r  , 1r  , –1). The signal z plays 
significant role in the control performances. Hence, 
simulation results have validated the effectiveness of 
the proposed controller in the control of chaotic 
thermal convection loop system. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. The time series of the chaotic thermal convection loop 
for the equilibrium point E1 when the sliding mode controller is 

activated at t = 25 for (a) x signals, (b) y signals, (c) z signals. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. The time series of the chaotic thermal convection loop 
for the equilibrium point E2 when the sliding mode controller is 

activated at t = 25 for (a) x signals, (b) y signals, (c) z signals. 
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CONCLUSIONS 
 
In this study, chaos control of flow in a thermal 
convection loop is investigated. Based on the 
Lyapunov stability theory and the Routh–Hurwitz 
criterions, an appropriate sliding surface is designed 
for suppressing the chaos in a three-dimensional 
thermal convection loop. It is theoretically proofed 
that a single state sliding mode control signal can be 
sufficient for the control. Then, numerical simulations 
have been carried out to verify the effectiveness of 
proposed control strategy. They have shown that the 
chaotic thermal convection system stabilizes towards 
its E(0, 0, –r) equilibrium point in 7-time period and 
the other two equilibrium points in 4-time period by 
means of a sliding mode control signal having unit 
gains. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. The time series of the chaotic thermal convection loop 
for the equilibrium point E3 when the sliding mode controller is 

activated at t = 25 for (a) x signals, (b) y signals, (c) z signals. 
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